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Abstract: The recently proposed cognitive control hypothesis suggests that the performance of cognitively 

loading but non-visual tasks such as cell phone conversation selectively impairs driving tasks that rely on 

top-down cognitive control while leaving automatized driving tasks unaffected. This idea is strongly 

supported by the existing experimental literature and we have previously outlined a conceptual model to 

account for the key underlying mechanisms. The present paper offers a more explicit account of these 

mechanisms in terms of a computational simulation model. More specifically, it is shown how this model 

offers a straightforward mechanistic explanation for why the effect of cognitive load on brake response 

time reported in experimental lead vehicle braking studies appears to depend strongly on scenario 

kinematics, more specifically the initial time headway. Moreover, it is shown that this relatively simple 

model can be fitted to empirical data obtained from a meta-analysis of existing lead vehicle braking 

studies.  

 

 

1. Introduction 

It is commonly assumed that the performance of non-visual but cognitively loading tasks (such as cell 

phone conversation) while driving delays responses to critical events. However, as reviewed in [1, 2] this 

effect appears to depend strongly on the type of response task used in the experiment. More specifically, 

cognitive load (CL) reliably impairs response performance in non-practiced, artificial, response tasks such 

as the Detection Response Task (DRT; [3-8]) or speeded and/or instructed responses to a lead vehicle’s 

brake light onset [9-19]. However, CL appears to leave response performance more or less unaffected for 

more natural tasks, such as reacting to rapidly closing, visually looming (optically expanding) objects. For 

example, Muttart et al. [20] conducted a lead vehicle braking simulator study with the brake lights of the 

braking lead vehicle turned off and as long as the braking event was not cued by an upstream event (and the 

response thus solely driven by looming), no effects of CL were found on braking performance. Similarly, 

Baumann et al. [21] conducted a driving simulator study investigating the effect of CL on the ability to use 

a predictive cue (a warning road sign) to guide drivers’ responses to an obstacle hidden behind a curve, and 

found that CL delayed response performance in the cued condition but not when the cue was absent (in 



2 

 

which case participants had to respond solely to the looming obstacle). Mantzke and Keinath [22] found that 

CL increased response times for the DRT, but not to suddenly appearing pedestrians. Similarly. Nilsson et 

al. [45] found that CL significantly delayed response time on the DRT but did not affect brake response 

times in a critical lead vehicle braking scenario lead where the brake light onset co-occurred with the onset 

of looming cues. Finally, Engström [1, Paper III] investigated braking and steering reactions to an oncoming 

vehicle which suddenly turned across the drivers’ path, and found no response delays due to CL for the first, 

truly surprising, scenario. To the knowledge of the present authors, no existing study (using ecologically 

realistic stimuli) has demonstrated a negative effect of CL on braking responses to unexpected looming.  

Engström et al. [2] proposed that these results may be explained by the cognitive control hypothesis 

stating that: cognitive load selectively impairs driving sub-tasks that rely on cognitive control but leaves 

automatic performance unaffected. Cognitive control here refers to higher-level “executive” resources 

needed to deal with novel tasks and/or tasks with inconsistent stimulus-response mappings [23]. An 

inconsistent mapping means that a specific stimulus is not consistently associated with a specific response, 

thus making the task unpredictable and inherently difficult. By contrast, tasks that are consistently mapped 

may initially require cognitive control (such as when learning to ski) but becomes increasingly automatic 

and effortless with practice. Therefore, on the assumption that cognitive control is a limited resource, the 

concurrent performance of a secondary cognitive tasks also relying on cognitive control would be expected 

to impair driving performance, but only those aspects of driving that rely on cognitive control. 

This idea is generally supported by the experimental literature on cognitive load in driving. As 

reviewed above (and in further detail in [2]), CL has reliably been found to delay DRT responses as well as 

responses to the brake light onset of a lead vehicle. While the DRT is consistently mapped, it is an artificial 

task that is novel to most study participants and hence relies on cognitive control to be performed. By 

contrast, braking in response to brake light onsets is a naturally occurring, and thus well-practiced, task. 

However, in everyday driving braking in response to brake lights is clearly inconsistently mapped since 

drivers do not always have to brake when seeing a brake light onset. In addition, in several of the studies 

reviewed above, participants were explicitly instructed to brake as soon as the lead vehicle started braking 

[9], or when they detected the lead vehicle’s brake light onset [10, 15, 19]. This clearly constitutes an 

unnatural task that, due to its novelty, is expected to rely on cognitive control and should thus be negatively 

affected by CL.  

By contrast, braking responses to strong looming cues (the optical expansion of the lead vehicle), 

which typically arise with some delay after the brake light onset, can be assumed to be largely automatic, 

since this involves a strongly consistent stimulus-response contingency (drivers generally have to press the 



3 

 

brake pedal when they experience an object looming towards them at a high rate since they will otherwise 

collide). This argument is further supported by studies showing that looming automatically captures 

attention in a bottom-up fashion [24] and elicits automatic avoidance responses in human [25] and monkey 

[26] infants. Moreover, a recent analysis of real rear-end crashes and near-crashes indicated that the timing 

of drivers’ braking responses could be largely explained in terms of visual looming cues (reflecting situation 

kinematics) while the timing relation between drivers’ reactions and lead vehicle brake light onsets was 

more variable [27].  

The same general pattern of results has also been demonstrated for other aspects of driving 

performance such as lane keeping [28], speed selection [29, 30] and gap acceptance at intersections [31] 

(see [2] for a review). 

We have previously [1, 2, 32] proposed a conceptual model of cognitive control and the development 

of automaticity, intended to provide a mechanistic account of the above pattern of results. The model is 

based on the Guided Activation Theory (GAT), originating in cognitive neuroscience [33-36]. GAT suggests 

that automaticity is determined by the strength of neural pathways in the brain, which is gradually 

established through exposure to consistently mapped tasks. In this model, the key function of cognitive 

control is to boost activity in weaker pathways (governing non-automatized, non-practiced and/or 

inconsistently mapped tasks), and potentially override activity in stronger pathways governing more 

automatized tasks, when needed to achieve current task goals. On the assumption that the cognitive control 

bias can only be (or, alternatively, is preferably-; see [35, 37]) allocated to one task at a time, CL imposed 

by a secondary (non-driving) task will selectively impair aspects of driving relying on cognitive control 

(such as the DRT or speeded/instructed responses to brake lights), as suggested by the cognitive control 

hypothesis. 

While our previous accounts [1, 2, 32] outlined this model on a conceptual level, the general aim of 

the present paper is to illustrate the proposed mechanism more explicitly in terms of a computational 

simulation model (similar computational implementations of the GAT model have previously been 

developed for laboratory tasks such as the Stroop task [34, 35]).    

More specifically, the present simulation addresses a phenomenon reported in a meta-analysis of 

studies investigating the effect of CL in lead vehicle braking scenarios [38]. This analysis was motivated by 

the observation that existing lead vehicle (LV) studies (as opposed to DRT studies) have reported highly 

variable response delays attributed to cognitive load, ranging from 50 - 1500 ms. The analysis in [38] found 

that this variability could be largely explained by the initial time headway (i.e., the time gap between the 

vehicles at the moment the lead vehicle starts braking) used in the respective studies. Studies with larger 
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initial time headways found larger effects of cognitive load and vice versa. A regression analysis on the 

response delays attributed to CL in these studies against the respective initial time headways indicated an 

R2 value of 0.79, indicating that 79% of the variance in the response time difference between cognitively 

loaded and non-loaded drivers could in fact be attributed to the initial time headway. 

This dependence of effects of CL on kinematics dovetails nicely with the cognitive control hypothesis 

outlined above: In the absence of cognitive load from a secondary task, cognitive control can be allocated 

to the non-automatized task of braking as fast as possible in response to the brake light onset. However, 

cognitively loaded participants will be impaired in their ability to respond to the brake light and thus have 

to rely on automatized responses to looming cues, once they appear. The timing of sufficiently strong 

looming cues depends on the scenario kinematics, particularly the initial headway, which thus explains why 

the effect of cognitive load on brake RT increases with increased headway. 

The specific objective of the present paper is to demonstrate how this proposed mechanism can be 

made explicit in terms of a neurobiologically plausible computational model, which despite being relatively 

simple (having only a few free parameters), can be fitted to the data from the meta-analysis in [38]. 

 

2. Method  

 

2.1 Driver reaction model 

The present model was based on the evidence accumulation framework developed by Markkula [39, 

40] and also incorporated key principles from the GAT model [33-36]. In the model, the driver’s deceleration 

response  to a braking lead vehicle is driven by two sources of sensory evidence: (1) the brake light and (2) 

visual looming. These two sources of evidence are integrated over time to a response threshold at which the 

braking action is initiated. Crucially, the sensory evidence is weighted by the strength of the respective 

neural pathways, representing the degree to which the response is automatized. In this case, looming 

responses are governed by a strong pathway established through repeated exposure to consistent looming-

braking mappings. By contrast, responses to the brake light onsets are governed by a weaker pathway (due 

to the inconsistent mapping between brake lights and braking in everyday driving), thus yielding weak input 

to the accumulator unable to trigger a braking response by itself. In order to trigger a braking response in 

the absence of looming, the brake light onset thus needs to be boosted by cognitive control. The model is 

conceptually illustrated in Figure 1.  

Looming was here represented as the rate of change of the angle θ, subtended by the lead vehicle at 

the retina (the optical expansion rate, θ’). An alternative looming signal is τ-1= θ’/ θ which, under certain 
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conditions, represents the inverse time to collision [41] (the behaviour of these two looming variables are 

rather similar and the extent to which they yield different model predictions will be explored in further 

modelling work). The brake light input was represented by an input s, set to 1 from the moment of lead 

vehicle brake onset. These two inputs were scaled by two connection weights wl and wb respectively 

(representing the strength of each pathway) before being input to the response unit, which was implemented 

as a simple accumulator of the form 

 

 (1) 
𝒅𝑨(𝒕)

𝒅𝒕
= 𝒌(𝒘𝒍𝒍(𝒕) + 𝒘𝒃𝒃 + 𝒄 − 𝒈), 

(1) 
 

 

where the accumulator activation was limited to be 𝐴(𝑡) ≥ 0, l(t) represents the looming perception, 

here simply given by θ’(t) and b represents the brake light perception (here identical to the constant stimulus 

input s) The constant c represents top-down bias from cognitive control which is only available in conditions 

without cognitive load (i.e., when cognitive control is not allocated to a secondary cognitive task). The 

cognitive task is represented in Figure 1 but was only included in the simulation in terms of its effect on 

cognitive control (i.e., disabling the allocation of cognitive control to the braking task, thus c = 0). A braking 

response is generated when the value of the activation A(t) exceeds the threshold 𝐴0, set to 𝐴0 = 1. The two 

weights wl and wb scale looming input and brake light input respectively, representing the key assumption 

that automatized tasks (braking in response to looming) are governed by strong pathways while non-

automatized tasks (here braking in response to the brake light) are associated with weak pathways. The 

parameter g is a gating parameter which prevents small inputs from accumulating to threshold. In the present 

model, it was set such that looming, but not the brake light alone, could trigger a braking response. Thus, 

cognitive control bias c is needed to generate a braking response to the brake light in the absence of looming 

(mathematically, 𝑤𝑏𝑏 + 𝑐 − 𝑔 > 0, but 𝑤𝑏𝑏 − 𝑔 < 0). Finally, k is a scaling factor that determines the rate 

of accumulation. Elsewhere [42], we have suggested that k may be thought of as representing effects of 

arousal on neural evidence accumulation rate, as previously suggested by [43, 44]. However, in the present 

model, k was simply set to 1 to reduce the number of free parameters. Since we were only interested in 

qualitative effects, noise was not included in the simulation. 



6 

 

 
Fig. 1.  Conceptual illustration of the simulation model 

 

 
2.2 Lead vehicle braking scenario simulation 

The kinematics of the lead vehicle braking scenarios were implemented so that the initial values of 

subject vehicle (SV) initial speed, the LV initial speed, LV deceleration rate and initial time headway could 

be controlled. The scenario kinematics were then translated into the optical variables θ and θ’ by means of 

the following equations  

𝜽 = 𝟐 ⋅ 𝒂𝒓𝒄𝒕𝒂𝒏(
𝑾𝑳𝑽

𝟐𝒅
) 

(2) 
 

 

𝜽′ = −𝑾𝑳𝑽𝒗𝒓𝒆𝒍/(𝒅
𝟐 +

𝑾𝑳𝑽
𝟐

𝟒
) . (3) 

 
 

WLV is the width of the lead vehicle, d is the bumper-to-bumper distance between the two vehicles and vrel 

is the relative velocity. Eq. 2 is obtained from the geometry of the situation, and Eq. 2 by differentiation 

with respect to time. The initial speeds of the SV and LV were both set to 85 kph and the LV deceleration 

rate to 0.5g (roughly representing the typical estimated values in the studies included in [38]).  

 
2.3 Parameter fitting 

The present simulations varied two factors: the initial time headway (1, 1.5, 2, 2.5 and 3 s) and 

cognitive load (on or off), with the aim to investigate if the model could account quantitatively for the 
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findings of [38], where, as described above, the effect of CL on brake response time depended heavily on 

initial time headway. The parameters wl, wb, c and g were manually tuned, given the constraints described 

above, to fit the response time versus initial time headway regression lines reported in [38], for non-loaded 

and cognitively loaded drivers respectively. (Mathematically, some of the parameters in Eq. 1 are of course 

redundant; for example, the constants c and g could be combined into a single variable. However, the link 

between the mathematical and the conceptual representation in Figure 1 would then be lost).   

It should be emphasized that since the kinematics (initial speed, LV deceleration etc.) differed between 

the different studies included in the meta-analysis [38], it was not meaningful to optimize the model 

parameters to fit these data; the sole purpose here was to demonstrate that the general effect of CL and initial 

THW on brake response time could be quantitatively replicated. The parameter settings used in the 

simulation are given in Table 1. 

 
Table 1 Parameter values  

 

Parameter Value 

initial time headway {1, 1.5, 2, 2.5, 3} 

SV initial speed 85 kph 

LV initial speed 85 kph 

LV deceleration rate 0.5g 

LV width 1.8 m 

wl 188 

wb 0.38 

c {0.53 (baseline), 0 (CL)} 

g 0.53 

b 1 

𝐴0  1 

k 1 

 

 

3. Results 

Figure 2 shows examples of simulation output for a scenario with an initial THW of 2.5 s (and other 

kinematic parameters set as defined in Table 1). The top panel shows the looming (angular rate, θ’) signal 

produced by this scenario and the two lower panels show the corresponding accumulator activation signal 

for a non-loaded driver and a cognitively loaded driver respectively. As can be seen, for the non-loaded 

driver, the accumulator reaches the response threshold relatively early, resulting in a brake response time of 

about 1.4 s. This is because the accumulator is mainly driven by the brake light signal with the help of top-

down cognitive control bias. However, for the cognitively loaded driver, unable to deploy cognitive control, 
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the response is driven mainly by looming, and thus comes significantly later, at 2.1 s.  Thus, for cognitively 

loaded drivers, the response time will be strongly dependent on the initial headway since this is a key factor 

determining the shape of the looming curve (see Eq. 3). For non-loaded drivers, able to respond to the brake 

light, this dependency should be smaller, but still present since the accumulator is still partly driven by 

looming.  

 
Fig. 2.  The upper graphs represent the looming signal (angular rate, θ’) generated by a lead vehicle braking scenario with an 

initial time headway of 2.5 s, a lead vehicle deceleration of 0.5 g and equal initial speeds of 85 kph. The two bottom graphs 

shows the accumulator activation that integrates to the response threshold (bold dashed line), driven by brake light and 

looming input, for a non-loaded and cognitively loaded driver respectively.  

 

Figure 3 shows the result of varying the initial time headway at {1, 1.5, 2, 2.5, 3} seconds for a 

cognitively loaded and a non-loaded driver. Plotted in the figure are also the linear regression lines obtained 

from the meta-analysis in [38]. As can be seen, the simulation model qualitatively replicates the key finding 

in [38] where the effect of CL on response time increases with initial time headway, due to a greater 
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dependency on initial time headway (reflected by the steeper slope) for cognitively loaded drivers for which 

responses rely primarily on looming.  

 

 

Fig. 3. Simulation results compared to the regression lines obtained from empirical data in [38] on brake response time as a 

function of initial time headway for cognitive loaded and non-loaded (baseline) drivers  

 

4. Discussion 

The general goal of the present paper was to demonstrate how our conceptual model of effects on 

cognitive load on driving outlined in previous work [1, 2, 32] could be implemented in a more 

mechanistically explicit simulation model. The resulting simulations presented above offer a precise account 

of why the effect of cognitive load on responses to a braking lead vehicle should depend heavily on the 

initial time headway, as indicated by the meta-analysis in [38]. According to the model, the key mechanism 

leading to this effect is the kinematics dependence of brake reaction times in lead vehicle braking scenarios 

where drivers primarily respond to looming cues rather than the brake light onset. In the present case, this 

occurs since the ability to respond to brake lights is impaired by cognitive load. However, a strong 

kinematics dependency of braking responses has also been demonstrated in real rear-end crashes and near 

crashes [27]. Thus, in a LV braking scenario with long initial time headway and/or low lead vehicle 

deceleration rate, it will take longer for looming cues to accumulate to threshold, resulting in longer RTs 

and vice versa. The present model suggests that braking as fast as possible in response to expected brake 
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light onsets in an experimental study is an artificial, novel task relying on cognitive control and thus impaired 

by cognitive load. Hence, the response times of cognitively loaded drivers will depend strongly on the 

kinematics (in this case initial time headway) while the responses of non-loaded drivers, ready to respond 

to the brake light, will be much less kinematics-dependent. This has the consequence that not only the 

absolute response times for loaded drivers but also the effect of CL on response time (the difference between 

the CL and non-loaded conditions) will depend strongly on initial time headway (as well as other kinematic 

parameters such as the LV deceleration rate).  

As discussed in previous publications [1, 2, 38], this has important implications for how to interpret 

results from existing experimental studies of effects of cognitive load. In particular, the experimenter can in 

principle control the effect of CL by the scenario design (and the present model could be used to roughly 

predict in advance what the effect would be). The key implication of this is the effects of CL on response 

times reported in existing experimental studies cannot be meaningfully generalized to real world scenarios 

[see 1, 2 and 38 for more extensive discussions of this point].  

It should be emphasized that the purpose of this study was just to illustrate how the present simulation 

model could be fitted to the aggregated RT data from our previous meta-analysis, thus demonstrating a 

concrete mechanism able to reproduce the observed data at that general level. However, more work is clearly 

needed to explore to what extent the present type of simulation model is also able to predict response times 

for different combinations of cognitive load levels and kinematics in a single experiment. 

To facilitate understanding of the proposed mechanism, the present model was intentionally kept 

relatively simple. There are several ways in which the model can be extended to increase realism. For 

example, in the present model, cognitive control biases the common response unit directly, while in the 

original GAT simulation models [34, 35] the top-down bias typically boosts the activity of a so-called hidden 

units located between the input and response units. This, hence, better represents the idea that top-down 

cognitive control increases activity in competing neural pathways. Moreover, adding noise to the evidence 

accumulation process could enable predictions about the distribution of response times in different scenarios.  

The present type of simulation model may also be applied to other aspects of driving performance. 

For example, we have recently developed a similar model that provides an explicit account for effects on 

cognitive load and drowsiness on lane keeping variability [42]. 
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