Analysis of a driver model sensitivity to various types of distraction

Franck MARS

5th International Conference on Driver Distraction and Inattention
Paris, March 20th, 2017
An interdisciplinary collaboration

Ablamvi Ameyoe
Brand new PhD at Renault

Philippe Chevrel
Control team

Eric Le Carpentier
Signal processing team

Hervé Illy
Renault
The problem

Distraction as an increasing cause of accidents
• Less and less people die on the road
• 17% increase in accidents due to driver distraction (2011-2015)

Countermeasure: driver state monitoring
• direct observation of the driver (eye and head tracking,...)
• observation of the consequences of distraction on vehicular control

A key problem: to predict the driver behaviour

Our approach: to base driver monitoring on a driver model
Different types of distraction

Distraction as any situation where the driver is diverted from the driving task

It may be:

• Visual: eyes off the road
• Cognitive: mind off the road
• Motor: hands off the steering wheel
• Any combination of the three above

Different types of distraction, different processes impacted, different effects on steering behaviour
What we need

A model of steering control

- A model that processes information from the visual scene
- A motor system that converts steering intention into actions
Our driver model

A cybernetic model:
- designed as a function of current knowledge on perceptual and motor processes
- that can be identified in various driving situations

Saleh et al. (2011) IFAC World; Mars et al (2011), HFES
When the driver model drives
Setup and procedure

35 participants
- 25 men and 10 women
- 21 to 60 years old (mean: 32)

Fixed-based simulator using SCANeR Studio

15 km of driving on a winding track

Succession of undistracted and distracted driving periods (1,15 min each)
- cognitive distraction (backward counting)
- visual distraction (peripheral reading)
- motor distraction (dialing)
- visuomotor distraction (dialing + eyes-off-road)
- one-hand driving (without distraction)
Data analysis

Analyses of variance + Dunnet tests were performed on:

- two indicators of steering behavior
 - Standard deviation of lateral position (SDLP)
 - Steering wheel reversal rates (SWRR)

- 4 parameter values obtained after identification by the prediction error method
 - Kp: visual anticipation gain
 - Kc: visual compensation gain
 - Kt: motor correction gain
 - Tn: time constant of muscular dynamics
Lateral position variability increases with V, M and VM distraction.
Steering wheel reversals

Steering wheel reversal rate increases with V, M and VM distraction
Visual compensation gain decreases for both types of visual distraction.
The visual anticipation gain decreases only for high visual distraction
Motor correction gain

Visual distraction propagates to the motor system parameters

Motor correction gain K_t^*
Arm dynamics time constant

Motor distraction only influence the arm dynamics parameter
Conclusion

- Steering behavior did not allow to discriminate between different types of distraction
- Taken together, the model parameters may be useful for detection and discrimination of distraction

More works needed to build a robust estimator of distraction

<table>
<thead>
<tr>
<th>Distraction type</th>
<th>steering performance</th>
<th>parameter analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SDLP</td>
<td>SWRR</td>
</tr>
<tr>
<td>Cognitive</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Motor</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Visual</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Visuomotor</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Contact information

franck.mars@ls2n.fr