



## Towards a detection of mind-wandering in driving: contributions of cardiac measurement and eye movements

### **PEPIN Guillaume**

Séverine Malin, Christophe Jallais, Fabien Moreau, Alexandra Fort, Daniel Ndiaye, Jordan Navarro & Catherine Gabaude

Driver Distraction & Inattention, Paris, France 22/03/2017





www.ifsttar.fr

2

# Mind-Wandering (MW)



## What's happening?

- Internal reorientation of attention Smallwood & Schooler, 2015
- Perceptual decoupling (evidence from cerebral activity)

## **Benefits?**

- Helps to get outside of the framework
- Self-relevant concerns: solving problem





## Drawbacks?

- Unconscious and fluctuating state
- Prevent working memory update Kam et al., 2014

## What about MW while driving?



## **Mind-Wandering and Driving**

## **Epidemiological study:**

- Inattention & Distraction → 25-50%
- Equivalent fraction of attributable risk

## **Recurring phenomenon**

- Around 50% of daily living thoughts Killingsworth & Gilbert, 2010
- 4 drivers out of 5 and around 35% of driving time *Berthié et al., 2015*

## **Characteristics**

- Fluctuating state, hard to catch
- Decreasing with task demand and increasing with working memory capacity

He et al., 2011; Smallwood & Schooler, 2015

Galéra et al., 2012



## **Neuroergonomics Approach**

Parasuraman, 2003



# Highlight physiological and behavioral indicators of MW while driving

www.ifsttar.fr

## **Materials & Methods**

20 participants (age 34.15 ± 11.93), 10 males

### Material

Driving simulator, electrocardiograph, eye-tracker

### Measurements

Heart rate, gaze behavior

### Instructions

Flash the Headlights (FH) when becoming conscious of MW then focus on driving

### Analysis

Comparisons between before [-5.5; 0] and after [0; +5.5] Flashing the Headlights (FH)











## **Results: gaze fixity**



- Higher gaze fixity during MW (m = 0.48) than during attentive driving (m = 0.41), p < .001</p>
- > Highest gaze fixity spike: 65% \*

\* = Gaze Fixity was present on 65% of 200 events (130)

8







- Lower heart rate during MW (m = 72.67) than during attentive driving (m = 73.69), p < .00001</li>
- Special pattern?

www.ifsttar.fr

## **Results**



10

www.ifsttar.fr

### To summarize:

- Gaze fixity is higher during MW
- A special cardiac pattern found after MW

Institut français des sciences et technologies des transports, de l'aménagement et des réseaux

## **Discussion: gaze fixity**



- Could explain the part of the higher crash risk associated to MW
- Results averaged on 200 events: high variability
- ➤ Gaze fixity is a sensitive indicator → improve its sensitivity?

www.ifsttar.fr

11

## **Discussion: heart rate**



### Pepin et al., 2017

Heart Rate is not a sensitive indicator of MW

Towards a real-time detection of cognitive effort in driving

 $\succ$  Special pattern (  $\int$   $\searrow$  ) could be related to a cognitive effort

Need to reorient attention to driving -> cognitive cost



12

## Conclusion



### Breathing data





Gaze Fixity



### **Detect MW on-line**

www.ifsttar.fr

14

Institut français des sciences et technologies des transports, de l'aménagement et des réseaux

Driving behavior





### Galvanic Skin Response

# Thank You For Your Attention

Guillaume PEPIN PhD Student Email: guillaume.pepin@ifsttar.fr **IFSTTAR-TS2-LESCOT** Tel: +33 (0)4 72 14 24 15

www.ifsttar.fr

16

## **Very long-term objective: BCI**

