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Motivations

‣ Driver distraction (in particular use of mobile phones): main 
concern for road safety studies.

‣ Importance of NDS (Naturalistic Driving Studies): high amount of 
data but need to be annotated.
‣ Manual annotation: expensive and time-consuming. 
‣ Alternative: automatic detection based on computer vision 

methods.
‣ Helpful for manual annotators.
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Difficulties: - Low resolution data, gray level, strong illuminations…
- High amount of data (computing time).
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State of the art

‣ Traditional machine learning techniques

‣ Hand detection

‣ Aggregated Channel Features (based on color and shape informations) [Das et al., 2015] 
[Rangesh et al., 2016]

‣ Histogram of Oriented Gradient (HoG) + Support Vector Machine (SVM) [Ohn-Bar, 2014]

‣ Phone-to-the-ear detection

‣ Detection of ear area based on face detection and landmarks, followed by HoG + SVM 
[Seshadriv et al., 2016]

‣ Deep learning techniques

‣ Hand and phone-to-the-ear detections

‣ Detect face, hand, cell-phone and steering wheel based on approach called Multiple Scale 
Faster-RCNN [Hoang Ngan Le et al., 2016]
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Performances evaluation: Frame-by-frame

Secondary tasks Testing data Precision rate Recall rate

Passenger 21 videos of 51 minutes in 
total (balanced set) 95,6 % 99,8 %

Feet on pedals 4 videos of 55 minutes in 
total (balanced set) Close to 100 % 94 to 98%

Hands on wheel 6 vidéos of 81 minutes in 
total (80% with hands) 99,5 % 85,4 %

Texting 11 videos of 155 minutes 
in total (7.5% of phone) 17 % 67 %

Phone-to-the-ear 12 videos of 122 minutes 
in total (3.2% of phone) 13 % 67 %
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Phone-to-the-ear 12 videos of 122 minutes 
in total (3.2% of phone) 13 % 67 %

+ Algorithm rarely misses passenger presence
- Some false detections.

+ Algorithm is rarely wrong
- Misses some detections.

+ Algorithm correctly detects 2 out 3 frames 
with phone presence
- A lot of false detections.
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Conclusions

‣ Use of machine learning approaches for NDS

‣ Promising results for secondary tasks detection.

‣ Allows to strongly reduce manual annotations computing time.

‣ False detections still need to be lowered.

‣ Improvements

‣ Post-processing filtering, add object tracking.

‣ Add more training samples.

‣ Try other frameworks or network architectures.
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Performances evaluation: Protocol and metrics

‣ Videos labeled manually through sequences for each feature:

‣ Positive and negative sequences.

‣ Several videos with different conditions: day/night situations, 
different drivers, wearing gloves or not, different types of cellphones 
etc.

‣ Studied metrics:

‣ Evaluation frame-by-frame: Recall and Precision

‣ Evaluation by sequence (Texting and phone-to-the-ear).
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Performances evaluation: Sequences

Metrics Positive sequences correctly detected False positive sequences detected

Texting 25 out of 32 352 out of 377

Phone-to-the-ear 12 out of 14 103 out of 115

Histogram of sequence length for Texting Histogram of sequence length for Phone-to-the-ear


