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RESUME - La méthodologie présentée associe I'exploitation des données
Pandoscopiques. Les essais pénétrométriques Panda® et les images géoendoscopiques
sont analysés, traités et exploités afin d’identifier automatiquement la stratigraphie, la
nature et la consistance permettant d’'estimer des propriétés géomécaniques des sols
traverses. Cette démarche est testée au travers d’essais en chambre de calibrations au
laboratoire.

ABSTRACT - An automatic method is presented to associate the results obtained
through Pandoscopic® test. The penetrograms and geoendoscopical images are analyzed
in order to obtain firstly the thickness layer. For each layer detected, both soil texture and
different geotechnical properties are estimated. This approach is validated through
laboratory tests performed in a calibration chamber for different soils profiles.

1. Introduction

Afin de maitriser au mieux I'hétérogénéité et la variabilité spatiale des propriétés
physiques et mécaniques de sols de surface, le développement de techniques et de
méthodes légéres, rapides, de faible colt, mais surtout permettant d'avoir une quantité
importante d'informations soit en profondeur, soit dans l'espace est aujourdhui
nécessaire.

Dans la pratique, le pénétrometre Panda®, créé et développé en France (Gourves,
1991), permet d'enregistrer quasiment en continu la résistance du sol en fonction de la
profondeur et de multiplier aisément et a faible colt le nombre de sondages. Le
pénétrogramme obtenu est trés riche en informations sur la stratigraphie et les
caractéristiques mécaniques des sols traversés. Cependant, aucune information sur la
nature et/ou la texture du sol traversé n'est disponible. L'essai est ainsi dit aveugle.

Pour remédier a ce probléeme, différents travaux de recherches permettant de coupler
I'essai géoendoscopique a l'essai de pénétration ont été réalisés (Breul, 1999 ; Haddani,
2004). Ces travaux sont aujourd'hui appliqués couramment dans le cadre du diagnostic
d'ouvrages de surface. Toutefois I'utilisation de cette méthode de couplage, baptisée
Pandoscope®, requiert une certaine expertise. L'efficience de cette méthode peut étre
dépendante de I'expérience de l'analyste.

L'objectif de ce travail est de proposer et valider une méthodologie automatisée de
couplage des données Pandoscope® permettant I'estimation des propriétés du sol en
fonction de la profondeur. Afin de valider cette méthode, une base de données d'essais en
chambre de calibration a été constituée au laboratoire. Cette base de données constituera
une base d'apprentissage pour le développement des algorithmes d'analyse des mesures
Pandoscope®. De ces algorithmes découlent un découpage de chaque moule en couches
distinctes. Pour chacune de ces couches, une nature supposée du sol et une signature
pénétrométrique sont associées. Ces informations sont ensuite utilisées pour mieux saisir
a partir d'une base de données de corrélations permettant le calcul de parameétres
géomécaniques pour chacune des couches.
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2. A propos de la méthodologie Pandoscope®

La méthodologie Pandoscope® est issue de l'association de I'essai pénétrométrique
Panda® et de la géoendoscopie. En effet a l'issu d’'un sondage Panda®, la tige est retirée
du sol et une caméra géoendoscopique est insérée dans la cavité laissée par le sondage.
Celle-ci est glissée depuis la surface jusqu’au fond du forage. Un systéme d’acquisition
spécialement congu enregistre en continu les vidéos, les images et la profondeur de la
prise de mesure.

A la fin de l'essai et seulement aprés avoir synchronisé les mesures en temps et
profondeur, on obtient un pénétrogramme et une vidéo (et/ou des images) qui sont
associés en fonction de la profondeur. Le résultat de cette association est dit : « carotte
virtuelle ».

2.1. Le Panda®

Le Panda® est un pénétrometre dynamique manuel léger a énergie variable. Il est
développé et commercialisé par I'entreprise Sol Solution. Dans la Figure 1 on présente le
principe du Panda®, les différents composants de I'appareil, un sondage réalisé en milieu
urbain ainsi que les pénétrogrammes obtenus ala fln d’ un sondage
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Figure 1. (a) Principe du pénétrométre dynamique Panda 2, (b) vu de I'ensemble, (c) Essai
réalisé sur site et (d) Pénétrogrammes obtenus et visualisables sur I'appareil (Benz, 2009)

Tel qu’on le montre dans la Figure 1, le matériel se compose d'une téte de frappe
instrumentée sur laquelle 'opérateur vient frapper a l'aide d’'un marteau standardisé. Les
capteurs sont reliés a une unité centrale d’acquisition qui vient compléter cette mesure
avec celle de I'enfoncement enregistré a l'aide d’'un deuxiéme capteur. L’ensemble de ces
informations est transmis a un terminal de dialogue qui va permettre a I'opérateur de
sauvegarder, classer, commenter, visualiser et par la suite de récupérer les sondages.

2.2. La Geoendoscopie

La géoendoscopie associe une technologie d’imagerie miniaturisée de qualité a une
mesure de profondeur. Cette association permet de visualiser et d’enregistrer des images
du sol a des profondeurs connues. La Figure 2 explicite le procédé de mesure ainsi qu’un
exemple de résultat obtenu a [I'heure actuelle par couplage des techniques
Pandoscopiques.

L’endoscope utilisé se compose d'un capteur d'image et d’'une source lumineuse tous
deux maintenus dans une gaine de faible diamétre et de longueur adaptée aux essais. Un
enregistreur de profondeur vient compléter la mesure afin de localiser les images
acquises. C’est cet ensemble qui constitue le matériel de la géoendoscopie.
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Figure 2. (a) Principe de I'essai géoendoscopique, (b) essais sur site, (c) exemple d’images
obtenues en profondeur et (d) couplage du pénétrogramme Panda® et des caractéristiques issus
de l'analyse d’'images géoendoscopiques : Pandoscope®

Divers travaux de recherche et d’application ont visé a définir, qualifier et améliorer
I'utilisation de la géoendoscopie (Barbier et al., 2017 ; Haddani et al., 2016). Dans le cadre
des applications actuelles, le systeme géoendoscopique enregistre une image localisée
en profondeur par palier d’enfoncement de 0,5 mm environ ; soit environ 2000 images par
meétre d’essai.

3. Méthodologie automatique pour la détermination des propriétés des sols

Cette méthodologie est testée sur des essais réalisés en laboratoire. Elle est composée
de trois procédés pour mieux caractériser les matériaux :

- Une méthode d’analyse par découpage

- Une méthode d’analyse d’'images endoscopique par apprentissage

- L’utilisation d’une base de données de corrélation

3.1. Mesures en laboratoire

Afin de valider la méthode, des essais en laboratoire ont été effectués. Des chambres de
calibration ont été constituées avec différents types de sols dans différentes
configurations. Il est ainsi possible d’étudier :

- différents matériaux

- différentes épaisseurs de couches

- différentes interfaces

- différentes teneurs en eau

Quatre matériaux différents ont été utilisés. Le Tableau 1 liste des propriétés
granulométriques des matériaux utilisés.

Tableau 1. Caractéristiques granulométriqgues des matériaux

Sable de Grave concassée
Parametre Sable grossier propre Ballast
Dunkerque (microballast)
Dso (mm) 0,21 1,40 6,00 38,9
Ce (dgy/dyy) 0,94 1,20 0,84 1,06
2
Cu (dso /d,, .deo) 2,81 2,13 1,87 1,64

La Figure 3 explicite la composition des éprouvettes congues, identifiées comme :
Moules Het 1, 2, 3 et 4. Elles sont composées de couches de sable de Dunkerque, de
sable grossier, de grave concassée (dit « microballast ») propre et de ballast.
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Figure 3. Schéma descriptif de la composition des différentes chambres de calibration

Pour chacune des éprouvettes, trois essais Panda® sont réalisés a la suite desquels
deux essais géoendoscopiques, opposés de 180°, sont effectués. Ainsi, les données
récoltées pour chaque moule ausculté sont constituées de 3 pénétrogrammes et 6 vidéos
référencées en profondeur. Soit 12 pénétrogrammes et 24 vidéos pour 'ensemble des
essais.

3.2. Méthodes d’analyse par découpage

Le signal pénétrométrique est analysé a l'aide d’une technique de découpage par fenétre
glissante. La stratigraphie automatique est obtenue dans cet étude par calcul du
coefficient de corrélation intra-classe (Sastre Jurado, 2018). Pour chaque pas de

glissement de la fenétre définie, le parametre p, est ainsi calculé selon I'équation (1)
suivante :

T;

_ 1
T, +T? @)

o

avec T’ la variance totale des échantillons a analyser et T? la variance pondérée tel
que :

1 m+n,
T2 = ) 2
: nl+n2_1§(x. #) 2)
T2=— 1 (no?+no?) 3)
w n1+n2 _1 1~1 2¥2

avec n, et n,la taille des échantillons comparés dans la fenétre, x la moyenne

empirique et ¢/, o) les variances empiriques pour chaque population. Un algorithme de

détection de pics est ensuite appliqué sur le résultat afin de réaliser un découpage
automatique (Sastre Jurado, 2018).

3.3. Méthodes d’analyse par apprentissage

La méthodologie de classification de nature du sol par analyse d'image se base sur une
approche par apprentissage (LeCun et al., 1998). Un algorithme de réseau de neurones
(RNA) dit profond est utilisé afin de modéliser le systéme de données d’image. Un RNA se
compose de difféerentes couches avec des interactions séquentielles entre elles. Dans le
cadre de cette méthode, le processus d’apprentissage est réalisé par propagation inverse
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de l'erreur afin d’optimiser un critére de performance choisi (Hecht-Nielsen, 1992 ; Hornik
et al., 1989). La plupart des couches de neurones optimisent ainsi des noyaux de
convolution afin de réaliser des traitements sur les images en entrée (LeCun et al., 1998).
L’ensemble des images acquises pour chaque éprouvette testée au laboratoire est
analysé par le réseau concu. Deux essais géoendoscopiques sont retenus dans chaque
moule afin de réaliser I'apprentissage, soit 8 essais sur les 24. L'apprentissage est ainsi
réalisé sur un tiers des essais. La Figure 4 schématise le processus de classification.

Réseau de neurones a convolution (CNN) Résultats
63% Ballast v/
34% Microballast x
2% Sable grossier x
1% Sable de Dunkerque %

Figure 4. Schéma de principe du processus de classification

3.4. Utilisation de la base de données de corrélations

Pour chaque couche et une fois la texture, nature connue et la consistance de chaque
matériau traversé, il semble plus simple et possible de corréler les valeurs
pénétrométrigues mesurées a des parametres géomeécaniques usuels (Ameratunga et al.,
2015 ; Dysli et Steiner, 2011).Pour ce faire, une base de données de corrélation
préalablement construite a Sol Solution mais aussi celles disponibles dans la littérature
sont utilisées. Ainsi, pour chaque couche détectée, les parametres suivants sont calculés :

va=A-In(gy)+B (@)
p=a-q, " +C ()
D.R =100 gE)No 6)
Epd = Q4 @)
CBR=X,-q," (8)

avec y, le poids volumique total (Breul et Saussine, 2011 ; Sol Solution, 2014 ; Vidella,
2014), ¢ langle de frottement interne (Kulhawy et Mayne, 1990 ; Villavicencio, 2009),
D.R la densité relative (Mayne, 2001), E_, le module cedométrique (Benz-Navarrete,
2009 ; Lunne et al., 1997) et CBR le California Bearing Ratio (Sol Solution, 2012). A, B,,
a, b, ¢, o, X, etY, sont des coefficients dépendants de la nature du matériau et

issues de la base de données de Sol Solution.

L’application de la méthodologie compléte permet donc de définir un modéle du sol
autour des essais avec des informations d’épaisseur de couche, de nature des éléments
et de caractéristigues géomécaniques comme illustré par la Figure 5.
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Figure 5. Schéma de principe de la méthodologie proposée

4. Résultats

Les résultats finaux ainsi que ceux intermédiaires sont présentés ici afin de mieux
comprendre le processus global.

4.1. La stratigraphie automatique

La stratigraphie automatique issue de I'analyse par découpage des pénétrogrammes est
appliguée a chaque essai Panda® réalisé dans chacune des éprouvettes (Figure 6).

Moule Het 1 Moule Het 2 Moule Het 3 Moule Het 4

qd (MPa) qd (MPa) qd (MPa) qd (MPa)
0.1 1,0 10,0 1000 01 1.0 10,0 100,0 0.1 1.0 100 100,0 01 1.0 10,0 100,0

——— Sondage 1
Sondage 2

—— Sondage 3

——Limites
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Figure 6. Schéma représentant les différentes limites détectées pour chaque chambre de
calibration

Tel quon peut le remarquer a partir de la figure précédente, les résultats sont
globalement satisfaisants. Les limites obtenues sont proches de celles définies par la
construction des difféerentes éprouvettes. L’analyse permet de détecter des limites entre
couche au sens mécanique. C’est-a-dire, des profondeurs a partir desquels le
comportement mécanique, exprimé en termes de la résistance de pointe qd, varie. Cette
variation peut survenir a des profondeurs différentes des limites de matériaux. De méme,
il peut étre noté que pour le Moule Het 3, une couche supplémentaire est détectée a
environ 10 cm de profondeur. Enfin, ces résultats se basent sur la mesure au Panda®, il
faut d’'une part considérer l'influence du systéme de mesure sur la précision en profondeur
et d’autre part les effets au voisinage des couches qui peuvent avoir une répercussion sur
la résistance de pointe lorsque le cone se rapproche de limites (Lunne et al., 1997).
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4.2. La classification automatique

Le processus de classification avec apprentissage supervisé par un réseau de
neurones permet d’obtenir pour chaque image une probabilité d’appartenance aux classes
d’apprentissage. Ainsi, la nature du sol retenue est celle correspondante a la valeur
maximale. Les résultats obtenus sont présentés pour chaque essai géoendoscopique de
chacun des moules testés. Ainsi, 6 essais par moule ont été effectués sachant que 2
d’entre eux ont servi a 'apprentissage du RNA. La Figure 7 présente les résultats obtenus
par cette approche. Les résultats issus du découpage pénétrométrique apparaissent
également.
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Figure 7. Graphique présentant les différentes natures prédites par 'analyse d’image pour
chaque essai de chaque chambre de calibration

Les résultats présentés dans la Figure 7 permettent de conclure que les analyses et
l'identification réalisée par notre RNA concernant la nature des couches est similaire a
celles d'origine. Ces résultats sont tres prometteurs sachant que la méthodologie ne
considére, pour le moment, pas les données comme étant successives. Il serait
intéressant d’intégrer le lien spatial entre chaque image. De plus, il est possible de noter
gue pour le cas de la couche supplémentaire détectée dans le moule Het 3, la nature la
plus probable est identique entre les deux premiéres couches. Cette limite est donc bien
une limite mécanique. Enfin, les résultats concernant la nature de la couche la plus
profonde du moule Het 2 indique une nature majoritaire de sable grossier. Cependant, ce
résultat est expliqué par I'écoulement du sable vers la partie inférieure du forage, ce qui
est confirmé par inspection visuelle.

4.3. Détermination des propriétés géomécaniques des sols

Pour chaque couche de nature et consistance différente, certaines propriétés
géomécaniques sont déterminées par les biais des corrélations. Les résultats obtenus
sont présentés dans le Tableau 2. Bien que les grandeurs obtenues pour chaque
parametre calculé correspondent avec celles présentes dans la littérature (Ameratunga et
al., 2015), on doit remarquer le caractére empirique de nos estimations. Aucune mesure
standard n’a été mise en ceuvre nous permettant de qualifier la véracité de ces résultats,
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ce qu’il faudrait prendre en compte dans l'avenir afin de compléter et améliorer la méthode
ici proposée.

Tableau 2. Résultats pour chaque chambre de calibration

Chambre | Limite de Nature 0 Y4 ¢ DR | E. | CBR
calibration | €U°he () (MPa) | (knim?) | () (MPa) | (%)
0,26 Ballast 25 13,3 36 25 9 8
M Het 1 0,58 Sable de Dunkerque 1,4 15,7 29 15 3 4
0,83 Microballast 3,8 14,0 35 23 13 11
1,09 Sable grossier 2,5 16,2 31 17 5 8
0,29 Sable de Dunkerque 0,8 15,3 26 14 2 3
M Het 2 0,52 Ballast 8,2 15,1 40 37 29 23
0,81 Sable grossier 2,4 16,2 31 18 5 7
1,12 Sable grossier 55 16,8 38 24 11 16
0,13 Microballast 1,3 12,4 33 23 5 4
0,32 Microballast 3,0 13,6 34 26 11 9
M Het 3 0,59 Sable grossier 1,0 15,5 29 13 2 3
0,82 Sable de Dunkerque 1,1 15,6 28 12 2 4
1,07 Ballast 19,2 16,4 46 47 68 50
0,3 Sable de Dunkerque 1,8 16,0 30 20 4 6
M Het 4 0,57 Microballast 6,4 14,7 41 32 22 118
0,82 Ballast 19,7 16,4 48 50 16 51
1,08 Sable grossier 4,5 16,7 33 23 9 13

5. Conclusions

La méthodologie complete mise en ceuvre, de l'acquisition aux analyses, permet de
déterminer automatiqguement une stratigraphie ainsi que des parametres géomécaniques
du sol en place. Cependant, cette démarche n’est appliquée qu'a un cas restreint
comportant seulement quatre type de sols et des épaisseurs de couches similaires. Cette
technique de couplage et d’analyse prometteuse nécessitera donc des essais plus
poussés. La preuve de concept est cependant satisfaisante du point de vue de la qualité
des résultats.

Afin d’améliorer la méthodologie, une base de données d’essais plus conséquente
devrait étre mise en place avec une intégration de la détermination de la classification du
sol plutét que de sa nature afin de généraliser la démarche. L’ajout de données issues
des images au systeme de découpage permettrait de détecter des couches selon des
variations a la fois mécaniques, physiques et d’état. En ce qui concerne la classification
du sol par analyse d’'images, des travaux ont déja été entrepris auparavant (Breul, 1999 ;
Haddani, 2004) et l'intégration de ceux-ci pourrait permettre de viabiliser la méthode.
Enfin, des essais de type Panda 3® fournissant davantage de paramétres mécaniques
pourraient eux aussi venir enrichir cette démarche.
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