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RÉSUMÉ – La méthodologie présentée associe l’exploitation des données 
Pandoscopiques. Les essais pénétrométriques Panda® et les images géoendoscopiques 
sont analysés, traités et exploités afin d’identifier automatiquement la stratigraphie, la 
nature et la consistance permettant d’estimer des propriétés géomécaniques des sols 
traversés. Cette démarche est testée au travers d’essais en chambre de calibrations au 
laboratoire. 

ABSTRACT – An automatic method is presented to associate the results obtained 
through Pandoscopic® test. The penetrograms and geoendoscopical images are analyzed 
in order to obtain firstly the thickness layer. For each layer detected, both soil texture and 
different geotechnical properties are estimated. This approach is validated through 
laboratory tests performed in a calibration chamber for different soils profiles. 

1. Introduction 

Afin de maîtriser au mieux l'hétérogénéité et la variabilité spatiale des propriétés 
physiques et mécaniques de sols de surface, le développement de techniques et de 
méthodes légères, rapides, de faible coût, mais surtout permettant d'avoir une quantité 
importante d'informations soit en profondeur, soit dans l'espace est aujourd'hui 
nécessaire. 

Dans la pratique, le pénétromètre Panda®, créé et développé en France (Gourvès, 
1991), permet d'enregistrer quasiment en continu la résistance du sol en fonction de la 
profondeur et de multiplier aisément et à faible coût le nombre de sondages. Le 
pénétrogramme obtenu est très riche en informations sur la stratigraphie et les 
caractéristiques mécaniques des sols traversés. Cependant, aucune information sur la 
nature et/ou la texture du sol traversé n'est disponible. L'essai est ainsi dit aveugle. 

Pour remédier à ce problème, différents travaux de recherches permettant de coupler 
l'essai géoendoscopique à l'essai de pénétration ont été réalisés (Breul, 1999 ; Haddani, 
2004). Ces travaux sont aujourd'hui appliqués couramment dans le cadre du diagnostic 
d'ouvrages de surface. Toutefois l'utilisation de cette méthode de couplage, baptisée 
Pandoscope®, requiert une certaine expertise. L'efficience de cette méthode peut être 
dépendante de l'expérience de l'analyste. 

L'objectif de ce travail est de proposer et valider une méthodologie automatisée de 
couplage des données Pandoscope® permettant l'estimation des propriétés du sol en 
fonction de la profondeur. Afin de valider cette méthode, une base de données d'essais en 
chambre de calibration a été constituée au laboratoire. Cette base de données constituera 
une base d'apprentissage pour le développement des algorithmes d'analyse des mesures 
Pandoscope®. De ces algorithmes découlent un découpage de chaque moule en couches 
distinctes. Pour chacune de ces couches, une nature supposée du sol et une signature 
pénétrométrique sont associées. Ces informations sont ensuite utilisées pour mieux saisir 
à partir d'une base de données de corrélations permettant le calcul de paramètres 
géomécaniques pour chacune des couches. 
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2. A propos de la méthodologie Pandoscope® 

La méthodologie Pandoscope® est issue de l’association de l’essai pénétrométrique 
Panda® et de la géoendoscopie. En effet à l’issu d’un sondage Panda®, la tige est retirée 
du sol et une caméra géoendoscopique est insérée dans la cavité laissée par le sondage. 
Celle-ci est glissée depuis la surface jusqu’au fond du forage. Un système d’acquisition 
spécialement conçu enregistre en continu les vidéos, les images et la profondeur de la 
prise de mesure.  
A la fin de l’essai et seulement après avoir synchronisé les mesures en temps et 
profondeur, on obtient un pénétrogramme et une vidéo (et/ou des images) qui sont 
associés en fonction de la profondeur. Le résultat de cette association est dit : « carotte 
virtuelle ».  

2.1. Le Panda® 

Le Panda® est un pénétromètre dynamique manuel léger à énergie variable. Il est 
développé et commercialisé par l’entreprise Sol Solution. Dans la Figure 1 on présente le 
principe du Panda®, les différents composants de l’appareil, un sondage réalisé en milieu 
urbain ainsi que les pénétrogrammes obtenus à la fin d’un sondage. 

 

Figure 1. (a) Principe du pénétromètre dynamique Panda 2, (b) vu de l’ensemble, (c) Essai 
réalisé sur site et (d) Pénétrogrammes obtenus et visualisables sur l’appareil (Benz, 2009) 

Tel qu’on le montre dans la Figure 1, le matériel se compose d’une tête de frappe 
instrumentée sur laquelle l’opérateur vient frapper à l’aide d’un marteau standardisé. Les 
capteurs sont reliés à une unité centrale d’acquisition qui vient compléter cette mesure 
avec celle de l’enfoncement enregistré à l’aide d’un deuxième capteur. L’ensemble de ces 
informations est transmis à un terminal de dialogue qui va permettre à l’opérateur de 
sauvegarder, classer, commenter, visualiser et par la suite de récupérer les sondages. 

2.2. La Geoendoscopie 

La géoendoscopie associe une technologie d’imagerie miniaturisée de qualité à une 
mesure de profondeur. Cette association permet de visualiser et d’enregistrer des images 
du sol à des profondeurs connues. La Figure 2 explicite le procédé de mesure ainsi qu’un 
exemple de résultat obtenu à l’heure actuelle par couplage des techniques 
Pandoscopiques. 

L’endoscope utilisé se compose d’un capteur d’image et d’une source lumineuse tous 
deux maintenus dans une gaine de faible diamètre et de longueur adaptée aux essais. Un 
enregistreur de profondeur vient compléter la mesure afin de localiser les images 
acquises. C’est cet ensemble qui constitue le matériel de la géoendoscopie. 
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Figure 2. (a) Principe de l’essai géoendoscopique, (b) essais sur site, (c) exemple d’images 
obtenues en profondeur et (d) couplage du pénétrogramme Panda® et des caractéristiques issus 

de l’analyse d’images géoendoscopiques : Pandoscope® 

Divers travaux de recherche et d’application ont visé à définir, qualifier et améliorer 
l’utilisation de la géoendoscopie (Barbier et al., 2017 ; Haddani et al., 2016). Dans le cadre 
des applications actuelles, le système géoendoscopique enregistre une image localisée 
en profondeur par palier d’enfoncement de 0,5 mm environ ; soit environ 2000 images par 
mètre d’essai. 

3. Méthodologie automatique pour la détermination des propriétés des sols 

Cette méthodologie est testée sur des essais réalisés en laboratoire. Elle est composée 
de trois procédés pour mieux caractériser les matériaux : 

- Une méthode d’analyse par découpage 
- Une méthode d’analyse d’images endoscopique par apprentissage 
- L’utilisation d’une base de données de corrélation 

3.1. Mesures en laboratoire 

Afin de valider la méthode, des essais en laboratoire ont été effectués. Des chambres de 
calibration ont été constituées avec différents types de sols dans différentes 
configurations. Il est ainsi possible d’étudier : 

- différents matériaux 
- différentes épaisseurs de couches 
- différentes interfaces 
- différentes teneurs en eau 

Quatre matériaux différents ont été utilisés. Le Tableau 1 liste des propriétés 
granulométriques des matériaux utilisés. 

Tableau 1. Caractéristiques granulométriques des matériaux 

La Figure 3 explicite la composition des éprouvettes conçues, identifiées comme :  
Moules Het 1, 2, 3 et 4. Elles sont composées de couches de sable de Dunkerque, de 
sable grossier, de grave concassée (dit « microballast ») propre et de ballast. 

Paramètre 
Sable de 

Dunkerque 
Sable grossier 

Grave concassée 
propre 

(microballast) 
Ballast 

D50 (mm) 0,21 1,40 6,00 38,9 

CC  1060 dd  0,94 1,20 0,84 1,06 

CU  6010

2

30 ddd   2,81 2,13 1,87 1,64 
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Figure 3. Schéma descriptif de la composition des différentes chambres de calibration 

Pour chacune des éprouvettes, trois essais Panda® sont réalisés à la suite desquels 
deux essais géoendoscopiques, opposés de 180°, sont effectués. Ainsi, les données 
récoltées pour chaque moule ausculté sont constituées de 3 pénétrogrammes et 6 vidéos 
référencées en profondeur. Soit 12 pénétrogrammes et 24 vidéos pour l’ensemble des 
essais. 

3.2. Méthodes d’analyse par découpage 

Le signal pénétrométrique est analysé à l’aide d’une technique de découpage par fenêtre 
glissante. La stratigraphie automatique est obtenue dans cet étude par calcul du 
coefficient de corrélation intra-classe (Sastre Jurado, 2018). Pour chaque pas de 

glissement de la fenêtre définie, le paramètre I  est ainsi calculé selon l’équation (1) 

suivante : 
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avec 1n  et 2n la taille des échantillons comparés dans la fenêtre,   la moyenne 

empirique et 
2

1 , 
2

2  les variances empiriques pour chaque population. Un algorithme de 

détection de pics est ensuite appliqué sur le résultat afin de réaliser un découpage 
automatique (Sastre Jurado, 2018). 

3.3. Méthodes d’analyse par apprentissage 

La méthodologie de classification de nature du sol par analyse d’image se base sur une 
approche par apprentissage (LeCun et al., 1998). Un algorithme de réseau de neurones 
(RNA) dit profond est utilisé afin de modéliser le système de données d’image. Un RNA se 
compose de différentes couches avec des interactions séquentielles entre elles. Dans le 
cadre de cette méthode, le processus d’apprentissage est réalisé par propagation inverse 
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de l’erreur afin d’optimiser un critère de performance choisi (Hecht-Nielsen, 1992 ; Hornik 
et al., 1989). La plupart des couches de neurones optimisent ainsi des noyaux de 
convolution afin de réaliser des traitements sur les images en entrée (LeCun et al., 1998). 

L’ensemble des images acquises pour chaque éprouvette testée au laboratoire est 
analysé par le réseau conçu. Deux essais géoendoscopiques sont retenus dans chaque 
moule afin de réaliser l’apprentissage, soit 8 essais sur les 24. L’apprentissage est ainsi 
réalisé sur un tiers des essais. La Figure 4 schématise le processus de classification. 

 

Figure 4. Schéma de principe du processus de classification 

3.4. Utilisation de la base de données de corrélations 

Pour chaque couche et une fois la texture, nature connue et la consistance de chaque 
matériau traversé, il semble plus simple et possible de corréler les valeurs 
pénétrométriques mesurées à des paramètres géomécaniques usuels (Ameratunga et al., 
2015 ; Dysli et Steiner, 2011).Pour ce faire, une base de données de corrélation 
préalablement construite à Sol Solution mais aussi celles disponibles dans la littérature 
sont utilisées. Ainsi, pour chaque couche détectée, les paramètres suivants sont calculés : 

   idid BqA  ln   (4) 

 
i

b

di cqa i

N
   (5) 
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avec d  le poids volumique total (Breul et Saussine, 2011 ; Sol Solution, 2014 ; Vidella, 

2014),   l’angle de frottement interne (Kulhawy et Mayne, 1990 ; Villavicencio, 2009), 

RD.  la densité relative (Mayne, 2001), oedE  le module œdométrique (Benz-Navarrete, 

2009 ; Lunne et al., 1997) et CBR  le California Bearing Ratio (Sol Solution, 2012). iA , iB , 

ia , ib , ic , i , iX  et iY  sont des coefficients dépendants de la nature du matériau et 

issues de la base de données de Sol Solution. 
L’application de la méthodologie complète permet donc de définir un modèle du sol 

autour des essais avec des informations d’épaisseur de couche, de nature des éléments 
et de caractéristiques géomécaniques comme illustré par la Figure 5. 

Ballast  
Microballast  

Sable grossier  
Sable de Dunkerque  

63% 
34% 
2% 
1% 

Caractéristiques apprises 

Données Réseau de neurones à convolution (CNN) 

… 

Résultats 
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Figure 5. Schéma de principe de la méthodologie proposée 

4. Résultats 

Les résultats finaux ainsi que ceux intermédiaires sont présentés ici afin de mieux 
comprendre le processus global. 

4.1. La stratigraphie automatique 

La stratigraphie automatique issue de l’analyse par découpage des pénétrogrammes est 
appliquée à chaque essai Panda® réalisé dans chacune des éprouvettes (Figure 6). 
 

 

Figure 6. Schéma représentant les différentes limites détectées pour chaque chambre de 
calibration 

Tel qu’on peut le remarquer à partir de la figure précédente, les résultats sont 
globalement satisfaisants. Les limites obtenues sont proches de celles définies par la 
construction des différentes éprouvettes. L’analyse permet de détecter des limites entre 
couche au sens mécanique. C’est-à-dire, des profondeurs à partir desquels le 
comportement mécanique, exprimé en termes de la résistance de pointe qd, varie. Cette 
variation peut survenir à des profondeurs différentes des limites de matériaux. De même, 
il peut être noté que pour le Moule Het 3, une couche supplémentaire est détectée à 
environ 10 cm de profondeur. Enfin, ces résultats se basent sur la mesure au Panda®, il 
faut d’une part considérer l’influence du système de mesure sur la précision en profondeur 
et d’autre part les effets au voisinage des couches qui peuvent avoir une répercussion sur 
la résistance de pointe lorsque le cône se rapproche de limites (Lunne et al., 1997). 

Méthodologie 
proposée 

Ballast 

dq , d ,  , RD. , oedE , CBR  

Sable grossier 

dq , d ,  , RD. , oedE , CBR  

Microballast 

dq , d ,  , RD. , oedE , CBR  

Sable de Dunkerque 

dq , d ,  , RD. , oedE , CBR  

Pénétogramme + images Stratigraphie, caractérisation 
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4.2. La classification automatique 

Le processus de classification avec apprentissage supervisé par un réseau de 
neurones permet d’obtenir pour chaque image une probabilité d’appartenance aux classes 
d’apprentissage. Ainsi, la nature du sol retenue est celle correspondante à la valeur 
maximale. Les résultats obtenus sont présentés pour chaque essai géoendoscopique de 
chacun des moules testés. Ainsi, 6 essais par moule ont été effectués sachant que 2 
d’entre eux ont servi à l’apprentissage du RNA. La Figure 7 présente les résultats obtenus 
par cette approche. Les résultats issus du découpage pénétrométrique apparaissent 
également. 

 

Figure 7. Graphique présentant les différentes natures prédites par l’analyse d’image pour 
chaque essai de chaque chambre de calibration 

Les résultats présentés dans la Figure 7 permettent de conclure que les analyses et 
l’identification réalisée par notre RNA concernant la nature des couches est similaire à 
celles d’origine. Ces résultats sont très prometteurs sachant que la méthodologie ne 
considère, pour le moment, pas les données comme étant successives. Il serait 
intéressant d’intégrer le lien spatial entre chaque image. De plus, il est possible de noter 
que pour le cas de la couche supplémentaire détectée dans le moule Het 3, la nature la 
plus probable est identique entre les deux premières couches. Cette limite est donc bien 
une limite mécanique. Enfin, les résultats concernant la nature de la couche la plus 
profonde du moule Het 2 indique une nature majoritaire de sable grossier. Cependant, ce 
résultat est expliqué par l’écoulement du sable vers la partie inférieure du forage, ce qui 
est confirmé par inspection visuelle. 

4.3. Détermination des propriétés géomécaniques des sols 

Pour chaque couche de nature et consistance différente, certaines propriétés 
géomécaniques sont déterminées par les biais des corrélations. Les résultats obtenus 
sont présentés dans le Tableau 2. Bien que les grandeurs obtenues pour chaque 
paramètre calculé correspondent avec celles présentes dans la littérature (Ameratunga et 
al., 2015), on doit remarquer le caractère empirique de nos estimations. Aucune mesure 
standard n’a été mise en œuvre nous permettant de qualifier la véracité de ces résultats, 
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ce qu’il faudrait prendre en compte dans l’avenir afin de compléter et améliorer la méthode 
ici proposée. 

Tableau 2. Résultats pour chaque chambre de calibration 

5. Conclusions 

La méthodologie complète mise en œuvre, de l’acquisition aux analyses, permet de 
déterminer automatiquement une stratigraphie ainsi que des paramètres géomécaniques 
du sol en place. Cependant, cette démarche n’est appliquée qu’a un cas restreint 
comportant seulement quatre type de sols et des épaisseurs de couches similaires. Cette 
technique de couplage et d’analyse prometteuse nécessitera donc des essais plus 
poussés. La preuve de concept est cependant satisfaisante du point de vue de la qualité 
des résultats. 

Afin d’améliorer la méthodologie, une base de données d’essais plus conséquente 
devrait être mise en place avec une intégration de la détermination de la classification du 
sol plutôt que de sa nature afin de généraliser la démarche. L’ajout de données issues 
des images au système de découpage permettrait de détecter des couches selon des 
variations à la fois mécaniques, physiques et d’état. En ce qui concerne la classification 
du sol par analyse d’images, des travaux ont déjà été entrepris auparavant (Breul, 1999 ; 
Haddani, 2004) et l’intégration de ceux-ci pourrait permettre de viabiliser la méthode. 
Enfin, des essais de type Panda 3® fournissant davantage de paramètres mécaniques 
pourraient eux aussi venir enrichir cette démarche. 
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