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PROBABILISTIC CALCULATION THAT TAKES INTO ACCOUNT THE SPATIAL
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RESUME - L'article présente I'évolution de la stabilité d'un talus au grand glissement,
selon différents types de calcul, déterministe, semi-probabiliste, probabiliste de type RSM
et probabiliste avec prise en compte de la variabilité spatiale des sols. Cette derniere
approche ne considére plus la dispersion naturelle des données comme une véritable
incertitude de mesure mais comme une information supplémentaire a intégrer au calcul.

ABSTRACT - This article exposes the stability evolution of a slope failure according to
different calculation approaches: deterministic, semi-probabilistic, probabilistic of RSM
type and probabilistic approach that takes into account the spatial variability of soil. This
last method mentioned, considers the natural dispersion of data as additional information
to include within the calculations and not as measurement uncertainty.

1. Introduction

Les justifications d’ouvrages géotechniques suivent généralement des approches
déterministes qui considérent des coefficients de sécurité partiels s’appliquant aux
différents parametres de calcul, ou globaux s’appliquant seulement au résultat du calcul.
Ces coefficients sont évalués pour que, dans les cas courants, le niveau de sécurité de
l'ouvrage respecte les probabilités de défaillance (ou les indices de fiabilité B) imposées
dans les documents normatifs. lls prennent donc en compte une incertitude type sur la
donnée d’entrée du calcul. Plus spécifique a chaque étude, les méthodes probabilistes
permettent un calcul direct de I'indice de fiabilité p en considérant I'incertitude réelle des
données d’entrée du probleme.

Une étude probabiliste a été menée pour apprécier I'influence de la dispersion spatiale
des parametres de dimensionnement sur l'indice de fiabilité p. Utilisant la position de la
donnée d'entrée géotechnique afin d’optimiser le calcul ; elle ne considére plus la
dispersion naturelle comme une véritable incertitude de mesure mais comme une
information supplémentaire a intégrer au calcul.

La méthode est testée dans le cadre de 'étude de la stabilité d’'un canal en remblai vis
a vis du grand glissement. Dans un premier temps, le contexte de I'étude ainsi que les
données utilisées pour le calcul sont détaillées. Puis des calculs traditionnels faisant
intervenir un seul coefficient de sécurité global ou des coefficients de sécurité partiels sont
menés afin de montrer la différence d’approche entre ces calculs et les calculs
probabilistes réalisés ensuite. Pour commencer, le calcul probabiliste est mené sans
considérer la variabilité spatiale. La méthode compléte prenant en compte la variabilité
spatiale est ensuite détaillée et appliquée a notre cas d’étude. Les résultats des
différentes méthodes peuvent alors étre interprétés et compares.
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2. Le contexte géotechnique de I’étude

2.1. Un ouvrage en terre homogéne

Canal M / L’étude consiste a justifier la
/ SP4 / z stabilitt au grand glissement

" Y d'un canal en terre (nhommé

/ / canal M) présenté sur la Figure
1. Le remblai est constitué d'une
partie  supérieure (RS) en
marnes compactées et une
partie inférieure (RI) en marnes
graveleuses compactes. Les

_ : parements du talus en contact
Ay > ; ™ , avec le canal sont fortement

/
7

360

"'1’65';'11 """" ’--/-;---'-----...-./.,.j..'/.'. ----- <-<--%  imperméables et constituent
S Substratum g donc une barriére qui limite les
— écoulements a lintérieur du

Figure 1. Coupe d'une des rives du canal — positions
des sondages pressiométriques SP3 et SP4 ainsi que des
points de données.

remblai.

2.2. Etude du glissement circulaire

Le mécanisme de rupture étudié est le glissement du talus selon une surface de rupture
polygonale (simplification d’'une surface de rupture circulaire) présentée Figure 1. Le
coefficient de sécurité global F est calculé a partir de la résistance au cisaillement du sol
Tmax €1 €n utilisant les hypothéses de Fellenius :

n
i= 1Tmaxlll

F =
L Wisina;

(1)

Avec n le nombre de tranches qui ont servi au calcul, T, la resistance au

cisaillement au centre de la base de la tranche i, [; la longueur de la base de la tranche,
W; le poids de la tranche par metre linéique et a; 'angle formé par la base de la tranche
avec I'horizontale.

2.3. Données sur le sol

Les données géotechniques a disposition pour I'étude consistent en 4 sondages
pressiométriques et diverses essais de laboratoires dont quelques triaxiaux. Pour obtenir
des valeurs de résistance au cisaillement (Tableau 1), deux sondages pressiométriques
SP3 et SP4 (représentés Figure 1) sont retenus. Les résistances au cisaillement sont
issues des corrélations de Cassan (1988). Ainsi, 13 valeurs de t,,,, sont obtenues dans
RS avec un faible écart-type et 20 valeurs dans RI avec un fort écart-type.

Tableau 1. Résultats de résistance au cisaillement obtenus & partir des essais in situ.

Parameétres de T,,, RS RI
Nombre de données 13 20
Moyenne u (kPa) 122,3 182,3
Ecart-type o (kPa) 8,2 61,6
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3. Variabilité spatiale et erreur sur la donnée

La variabilité spatiale d’'un parametre de
sol correspond simplement a la variation

g Streceayec) naturelle de la valeur de ce paramétre dans
z |, Couche 1 le sol du fait de I'hétérogenéité de ce
A ' dernier. Typiquement, le géotechnicien
"7 devra considérer une couche de sol j
: el (F,igure 2) et une propriété p(z) qui peut
: dépendre de la profondeur z par exemple. Il
pourra appréhender une certaine tendance
Couche t(z) de la propriété (qui peut étre une
= Priniaiynits constante) mais les écarts naturels v(z) par
par rapport a la tendance, v(z) 4

; Tendance, t(z) rapport a cette tendance ne seront
accessibles que par la mesure. Il est

| Wil possible d’écrire simplement :
Figure 2. lllustration de la variabilité spatiale. p(2) = t(2) + v(2) 3)

Pour étudier cette variabilité spatiale, il faut caractériser la corrélation spatiale dans la
couche j. Parler de corrélation spatiale revient a dire que deux points proches dans
'espace doivent avoir des propriétés similaires car le sol est moins hétérogéne pour de
faibles distances. Il est alors possible de définir une distance de corrélation d, distance a
partir de laquelle il n’y a plus ou trés peu de corrélation ou de ressemblance entre deux
mesures.

Pour des remblais, ce phénoméne de variabilité spatiale peut s’expliquer par leur
construction par compactage de couches successives, avec des matériaux issus de
carrieres peut-étre différentes, dans des conditions climatiques pouvant varier, etc ...

Le paramétre mesuré p,,(z) est aussi soumis a I'erreur de mesure e(z) qui est liee a la
précision de I'appareil, a l'interprétation de I'opérateur. Il est alors possible d’écrire :

Pm(2) = p(2) +e(2) = t(2) + v(2) + e(2) (4)

Sans variabilité spatiale, I'incertitude considérée est généralement globale et rassemble
v(z) et e(z). L'objectif de la présente étude est de considérer v(z) comme une information
a ajouter au calcul et non plus comme une erreur, une incertitude.

4. Les approches de calcul traditionnelles

4.1. Choix de valeurs prudentes

Pour le choix des paramétres de calcul dans les approches déterministes et semi-
probabilistes, les Eurocodes recommandent d’utiliser des valeurs prudentes qui peuvent
étre déduites statistiquement a partir de 'analyse des données. D’aprés I'Eurocode 7,
selon que le mécanisme de rupture est plutdt « local » ou non, il faut considérer une
valeur « basse » X, ou une valeur « moyenne inférieure » X,,; du parametre. Elles
peuvent étre estimées avec les formules (Baguelin, 2006) :

szﬂ—kbO', kbzté\{as:l’l"'% (5)

’5(1)\{0_51
Xmi = U — kpio, kmi = N (6)
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Avec N le nombre de données et t{Z le fractile a 5% de la loi de Student & N — 1 degrés
de libertés. Sous I'hypothése d’une distribution normale des données, ces formules sont
censées donner une estimation prudente de la moyenne et du fractile a 5%.

La valeur basse peut étre utilisée lorsque la rupture se produit en passant uniguement
par quelques points faiblement résistants du milieu, avec un mécanisme de rupture
considéré comme «local ». La valeur moyenne inférieure sera plutdt a réserver au
mécanisme de rupture sollicitant un volume de sol important. Par ailleurs, la distance de
corrélation permet d’évaluer si des points de données « faibles » peuvent impacter ou non
un volume de sol important. Les valeurs prudentes évaluées a partir des données initiales
du projet (Tableau 1) sont donnés dans le Tableau 2. Il est important de noter, I'écart-type
étant beaucoup plus élevé pour les données de RI, la valeur basse estimée est trés
pessimiste et X&' < X& alors que la moyenne basse I'est moins

XRL > xRS

Tableau 2. Valeurs basses et moyennes inférieures dans RS et RI.

Parameétres de 7,4, RS RI
X (kPa) 118,2 158,5
X, (kPa) 107,2 73,2

4.2. Calcul déterministe

Le principe du calcul déterministe est d'utiliser des valeurs prudentes dans la formule
(1) et de calculer le coefficient de sécurité global F qui représente la marge de sécurité
entre la situation réelle et la situation de rupture, de défaillance de 'ouvrage. Le coefficient
a vérifier pour la stabilité vis-a-vis du grand glissement est pour notre cas 1,5. Avec les
valeurs basses X, du Tableau 2, le calcul donne F = 1,05 tandis qu’avec les valeurs
moyennes inférieures X,,;, F =2,03. Le résultat est donc difficilement interprétable
puisque, selon le choix des valeurs prudentes (X, ou X,,;), la sécurité du canal M est
justifiée ou non.

4.3. Calcul semi-probabiliste

Le principe des calculs semi-probabilistes est de tenir compte plus spécifiquement des
incertitudes relatives a chaque parametre du probléme en intégrant a la formule de départ
(1) différents coefficients de sécurité partiels. Les formules pondérant les paramétres de
sol (Eurocodes 7, approche de calcul 3, ouvrage courant) donnent :

n ITmaxi L.
i= i
F = S Y
rmethode Zi=1ryWi sin a;

Avec I, I} et L,enoqe l€S cOefficients pondérant respectivement le poids volumique du
sol, la résistance au cisaillement et la méthode de Fellenius et valant respectivement 1,
1,4 et 1,1. Ces coefficients sont congus pour assurer une certaine marge de sécurité dans
des situations courantes lorsqu’ils sont couplés a des valeurs prudentes de parametres.
L’objectif est cette fois d’obtenir un coefficient de sécurité global F supérieur a 1. Pour
'étude, le poids volumique des sols est relativement bien identifié donc lincertitude
repose en grande majorité sur t,,,, dans RS et RI. Avec les valeurs basses du Tableau 2,
le calcul donne F = 0,68 tandis qu’avec les valeurs moyennes inférieures F = 1,32. Le
résultat est donc encore une fois difficilement interprétable pour justifier la sécurité du
canal M.
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4.4. Origine des coefficients de sécurité globaux et partiels

Il existe deux fagons de déterminer

Données issues

|es Valeu rs nu mérlqueS des Données complétes gi'iti‘ljadireess Lois de distribution
coefficients de sécurité (Figure 3). La Méthodes déterministes Méthodes probabilistes
premiére, encore tres utilisee, Méthodes historiques corM Integralement
consiste & les calibrer avec expérimentaies (weauny || RN
'expérience acquise lors d’études

similaires. La deuxieme consiste a [catbraton | [caibraton | [cabion |
utiliser la théorie probabiliste de la

fiabilité pour calibrer les coefficients. Mot

Les coefficients partiels ou globaux vt

peuvent donc permettre d’adapter le éthode ¢

calcul probabiliste a des cas d’étude Mehosea | Coloulaux Méthode b
standards en évitant d’avoir a réaliser partiels

de véritables calculs probabilistes
parfois compliqués.

Figure 3. Méthodes de calibration des
coefficients partiels.

5. L’approche probabiliste

5.1. Modélisation des variables aléatoires

Pour le calcul probabiliste, il faut caractériser 7,,,, dans RS et Rl par deux variables
aléatoires. A chaque intervalle de valeurs possible de t,,,, il faut associer une probabilité
d’occurrence. Des histogrammes sont réalisés a partir des valeurs obtenues pour chaque
point de donnée. Ensuite, des modéles de lois probabilistes sont calés sur les données
Dans la Figure 4, les fonctions de densité de probabilité de ces lois sont représentées.
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Figure 4. Histogrammes des données et modeles de distribution normale (trait continu gris),
log-normale (pointillés longs) et béta (pointillés courts).

Pour I'étude, des modeles de distribution normale, log-normale et béta ont été étudies.
Les parametres des lois de probabilité associées sont présentés Tableau 3.

Tableau 3. Moyennes u et écart-types a. B et H : borne inférieure et supérieure de la loi béta.

Loi Paramétres associés (kPa) RS Parameétres associés (kPa) RI
Normale Ugs = 122,3 Ogs = 8,2 Ug; = 182,3 op; = 61,6/
Log-normale Ugs = 122,3 ogs = 8,0 ug; = 184,1 op; = 72,3
Béta Urs = 122,3 Ors = 8,2 Ur; = 182,3 op; = 61,6

B = 30 Hps = 170 B = 30 Hg; = 351
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5.2. Calcul probabiliste RSM et résultats

Une fois les variables aléatoires définies pour RS et R, il est possible de calculer un
indice de fiabilité B pour I'ouvrage avec des calculs probabilistes. La probabilité de
defaillance P; de I'ouvrage est estimée avec la fonction de répartition de la loi normale
centrée réduite. L'approche adoptée RSM (Response Surface Method, Cazes, 2014) est
une méthode itérative qui permet d’obtenir une valeur précise de g en étudiant la fonction
de défaillance qui dépend des variables aléatoires. L’une des particularités de la RSM est
d’approximer cette fonction, parfois implicite, par un polynédme dont on recalcule les
coefficients a chaque itération.

Les résultats du calcul RSM sont répertoriés au Tableau 4. lls sont comparés a des
résultats de simulations de Monte-Carlo afin de valider notre approche par la RSM qui
donne des résultats tres fiables. Ces résultats peuvent étre comparés a certains indice de
fiabilités cibles indiqués dans les Eurocodes. Par exemple, pour un batiment de classe
RC2, le f minimum demandé pour une période d'observation de 50 ans est 3,8. Les
résultats du calcul probabiliste sont donc en deca de ces recommandations Eurocodes et
restent tres dépendant de la loi de probabilité choisie. Pour la suite on retiendra la loi béta
qui nous semble la plus réaliste puisque le tirage de valeurs négatives ou trés fortes est
impossible.

Tableau 4. Résultats du calcul RSM et de simulations de Monte-Carlo.

Loi B RSM B Monte-Carlo Pr Monte-Carlo
Normale 1,878 1,878 3.02 10°
Log-Normale 2,488 2,489 6,53 10.3
Béta 2,057 2,058 1,0810

6. Calcul probabiliste et variabilité spatiale

La variabilité spatiale considére la valeur de la donnée et sa position (x,y). De ce fait,
si des valeurs élevées de résistance au cisaillement se situent dans la zone du
mécanisme de rupture, I'indice de fiabilité pourra étre augmenté par rapport a I'étude
probabiliste simple. Dans le cas contraire, l'indice sera diminué.

6.1. Relation entre t,,4, €t la contrainte verticale

Une amélioration de la résistance au cisaillement 1,,,,, avec la contrainte verticale o,.,;

(donc avec la profondeur) est observée sur les données. Pour obtenir un paramétre
dépendant uniguement des variables d’espace x et z (

Figure 5), une régression linéaire est réalisée sur les données de RS et Rl et permet de

determiner une relation simple 7,..; = f(d,er¢)- Plus les points de données sont éloignés

de la droite de régression, plus la variabilité spatiale est importante, ce qui est le cas pour
le remblai inférieur RI qui présente un écart-type des données important. Pour chaque

valeur réelle 7,,,,, On retranche la valeur 7,., pour obtenir une nouvelle variable (T, —
Treg) dépendante seulement de x et z. Les valeurs de (Tjqx — Tregq) SONt représentées

en fonction de o,.,+
Figure 5.
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Figure 5. Relation entre 7,4y €t ,¢r; @ gauche et (Tyax — Treg) €L Opere A droite.

6.2. Evaluation de la corrélation spatiale

Pour déterminer la maniére dont les données sont corrélées spatialement, un
variogramme est calculé. La corrélation spatiale est évaluée selon les deux directions x et
z. Le variogramme échantillonné obtenu pour I'analyse des données de RS, selon z est
présenté Figure 6. Il nécessite de calculer pour chaque paire de points la distance
verticale qui les sépare et une semi-variance. Plus la distance est grande plus la semi-
variance augmente car les données sont moins corrélées entre elles. Ensuite, il faut caller
un modele théorique de variogramme plus pratique a utiliser (modele sphérique, cubique
ou gaussien). Les principaux éléments du variogramme sont la distance de corrélation d,
I'effet de pépite qui marque une discontinuité de la corrélation spatiale pour de faibles
distances et le palier qui indique que les données ne sont plus corrélées entre elles.

Tableau 5. Paramétres des

Variogramme t,,,, - T,,, selon Z (RS) modéles de variogramme retenus.
Effet de pépite 20 kPa? : des Palier 105 kPa? : les données ne Paramétres
120 données infiniment proches sont plus corrélées entre elles . . RS Rl
ne sont pas infiniment = s Vanographlques
100 - corrélées entre elles DL o o
= et Type de sphérique | sphérique
§ w0 ...é,’/ . variogramme
= ’.-" 2 | ol I Distance de corr.
© / . @=Variogramme échantilloné 3 5
§ 60 i o en z (m)
3 © o = anosrammegicqus Distance de corr. 2000 / 2000 /
é .I’.".. / *+ ¢ variogramme cubique en x (m) 110/40 110/40
‘v.__h.‘. o
2 Distance de corrélationenZd=3m e==variogramme gaussien Palier (kPaZ) 105 1950
0 -
Effet de pépite
4 : : Dista3nce Z(m) : : (kPaZ) 20 1200

Figure 6. Variogramme échantillonné et modéles de
variogrammes obtenus pour RS selon l'axe z.

Pour évaluer des variogrammes selon I'axe x, le nombre de données est insuffisant (2
profils pressiométrigues seulement). L’hypothése que tous les paramétres des
variogrammes en x et en z sont identiqgues hormis les distances de corrélation est alors
supposée. Pour RS et RI, trois modeles de variogrammes sont testés selon x avec des

distances de corrélation de 2000, 110 et 40 m. Les parametres des modeles sont indiqués
dans le Tableau 5.
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6.3. Krigeage des données
Le krigeage est une méthode

Résistances au cisaillement résistance au cisaillement (kPa)

d’interpolation spatiale qui tient 30 0
compte notamment de la position a0 el 250
des données et des modeles de E 20
variogrammes choisis. En chaque 27/ .
point ou la valeur du paramétre est a0 A
estimée, le krigeage permet N o , i | | = 0"
d’obtenir un écart-type o, qui 2 © “ e 100 120
caractérise I'incertitude de Ecartéypes e (o)
'estimation. [l dépend aussi du 360 *
modéle de variogramme et de la sk ¥
distance entre les points estimés et £ | v
les points de donnée réels et est £ *
donc directement lié & la variabilité wof .
spatiale. Le krigeage considéere la aof , , ! ! , ;
valeur de la donnée d'entrée comme 2 “0 e 100 120

juste. Pour la suite, il faudra donc

veiller & intégrer au calcul une erreur Figure 7. Reésultats du krigeage avec une

de mesure supplémentaire sur cette distance de corrélation d, = 40 m.

donnée d'entrée.

Une fois le krigeage de (Tjax — Trey) réalise, des valeurs de 7,4, sont calculées

simplement avec (rmax — rreg) + T,¢4. L€ résultat final obtenu avec une distance de
corrélation en x de 40 m est présenté en Figure 7.

6.4. Définition des variables aléatoires et calcul probabiliste

La méthode RSM adoptée nécessite des variables aléatoires indépendantes. Le talus a
donc éteé divisé en différents éléments. Chaque élément doit correspondre a une variable
aléatoire t,,,, €t étre indépendant de ses voisins. Pour qu’ils soient indépendants, leurs
dimensions ont été choisies pour correspondre aux distances de corrélation retenues en x
et z. Par exemple, dans RI, les éléments sont des rectangles de 40 m de large par 5 m de
haut pour d, =40 m. Une fois les éléments définis géométriquement, et a partir des
estimations de 1,4, par krigeage, une densité de probabilité béta munie d’'une moyenne u
et d'un écart-type o peut leur étre associée. L’écart-type a,, de mesure de I'élément est
alors considéré comme égale a o et une valeur prudente de I'écart-type de krigeage o, est
calculée. Une nouvelle loi de distribution béta est alors définie par la moyenne u et I'écart-

type total o, = \/o? + 0% . Chaque élément est donc associé a une variable aléatoire 7,4,

munie de sa propre loi de probabilité (Figure 8). Les résultats du calcul RSM sont donnés
Tableau 6.
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Tableau 6. Résultats du calcul
probabiliste avec des lois béta
et différents d,.

it Distance de s
T corrélation en x (m)
= Estimations du paramétre du Ecart-types de krigeage o, 2000 3,057
‘_ 2 macro-élément 13 : 110 3.279
: 2 40 5,565
10 n
12 ! 1
\ Tl T = = immEi=mEE s IS See

Figure 8. Représentation des éléments du canal M

7. Conclusions

Dans le cadre de notre projet, nous avons adopté différentes méthodes de calcul pour
justifier la stabilité au grand glissement d'un talus de 32 m de haut. A partir de corrélations
sur les résultats d’essais pressiométriques, un jeu de paramétres géotechniquement
probable est adopté, 13 valeurs dans la partie supérieure du remblai en marnes
compactées (faible écart type) et 20 valeurs dans la partie inférieure du remblai en
marnes graveleuses (fort écart type). Les recommandations en vigueur proposent de
travailler avec des valeurs prudentes comprises entre, Xy valeur "basse" représentative du
milieu pour un mécanisme de rupture considéré comme "local" et xm; valeur "moyenne
inférieure" représentative du milieu pour un mécanisme de rupture considéré comme
"global".

La premiere approche déterministe vise un coefficient de sécurité de 1,5 pour notre
projet. Le calcul donne un coefficient de F = 1,05 avec les valeurs "basses" x, et F = 2,03
avec les valeurs " moyenne inférieures" xmi. Ces résultats ne permettent pas de conclure
sur la stabilité du talus.

La deuxieme approche semi-probabiliste consiste a pondérer les parametres (Eurocode
7, approche de calcul 3, ouvrage courant). L’objectif est cette fois d’obtenir un coefficient
de sécurité global F supérieur a 1. Le calcul donne F = 0,68 avec les valeurs "basses" xp
et F = 1,32 avec les valeurs " moyenne inférieures" xn,;. Ces résultats sont encore une fois
difficilement interprétables pour justifier la stabilité du talus.

La troisiéme approche probabiliste caractérise les données d'entrée par une probabilité
d'occurrence dont la distribution peut étre approximée par une loi, normale / log-normale /
Béta ... Le résultat recherché est un indice de fiabilité = 3,8 pour notre projet. Les
résultats montrent une grande dépendance a la loi de distribution des données d'entrée :
B =1,87 pour une loi normale, B = 2,48 pour une loi log-normale et § = 2,05 pour une loi
Béta. Notons que ces 3 résultats montrent un indice de fiabilité inférieur a la valeur cible
de 3,8 ; ce qui n'est pas satisfaisant pour justifier la stabilité du talus.

La quatrieme approche probabiliste avec prise en compte de la variabilité spatiale, ne
considére plus la dispersion naturelle des données comme une véritable incertitude de
mesure mais comme une information supplémentaire a intégrer au calcul. Pour notre
projet, les données de forte résistance étant positionnées dans la zone de rupture
potentielle, I'indice de fiabilité B augmente fortement jusqu'a g > 5,0 justifiant amplement la
stabilité du talus.
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