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RÉSUMÉ – Cet article porte sur la reconnaissance de sols à faible profondeur à l’aide de 
l’essai de pénétration dynamique Panda®. Une méthode globale est proposée afin de 
bâtir un modèle de terrain probabiliste 3D à partir des mesures issues d'une campagne 
d’essais. L’application de l’approche et de la méthode envisagée est présentée sur un site 
expérimental deltaïque en Espagne.   

ABSTRACT – This work focuses on the shallow geotechnical characterization using the 
lightweight dynamic cone penetrometer Panda®. An overall method is proposed in order 
to obtain a 3D probabilistic ground model through a geotechnical campaign based on the 
Panda test. The application to a deltaic site in Spain of the several techniques as part of 
the proposed framework is presented here.  

1. Introduction et problématique 

La nécessité de prendre en compte la variabilité spatiale des sols est aujourd’hui 
complétement intégrée dans les normes de calcul des ouvrages géotechniques. 
Néanmoins, l’estimation et la prise en compte de cette variabilité reste une question 
encore largement débattue par les comités techniques comme le prouvent les récentes 
discussions du groupe de travail au niveau européen TC205/TC304 sur les méthodes 
statistiques et fiabilistes à utiliser dans le cadre des Eurocodes (Li et al., 2017).  

La problématique est de pouvoir définir et fournir un modèle géotechnique de terrain 
probabilisé permettant d’alimenter les modèles de calcul. Pour ce faire, l’ingénieur 
géotechnicien doit nécessairement s’appuyer sur les données en sa possession en vue 
d’en extraire les informations les plus riches et fiables possible.  

C’est pourquoi l’usage des essais in-situ, permettant d’ausculter le sol dans son état de 
contraintes naturel et avec une bonne résolution (soit parce qu’ils peuvent être multipliés, 
soit parce qu’ils fournissent une mesure quasi-continue ou spatialisée des propriétés du 
sol), se développe de plus en plus.  

Parmi la grande palette d'essais in-situ disponibles, l’essai pénétrométrique est le plus 
couramment utilisé. L'intérêt principal de cette technique réside dans le fait de fournir une 
information mécanique presque continue du sol traversé permettant ainsi de caractériser 
la variabilité d'une formation donnée en fonction de la profondeur, ce qu'aucun autre outil 
d'investigation géotechnique n'est en mesure de proposer (Jacquard et Boutet, 2016).  

Dans le cadre de la caractérisation des sols de surface, l'essai de pénétration Panda® 
(Gourvès,1991) présente de nombreux avantages : une grande résolution de mesure (de 
l’ordre de 1 mesure/5mm), la possibilité de collecter une grande quantité de données du 
fait de sa rapidité de mise en œuvre et d'utilisation, de son coût abordable et grâce 
également à la possibilité d'adapter l'énergie de battage. Par ailleurs, depuis sa création 
le Panda® a bénéficié de nombreux progrès soit technologiques soit théoriques (Benz-
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Navarrete, 2009) (Escobar, 2015). Cet essai s'avère donc être un moyen de 
reconnaissance développé et moderne par rapport au pénétromètre dynamique 
classique, longtemps considéré comme un appareil de reconnaissance rudimentaire et 
non satisfaisant (Waschkowski, 1983).  

Bien que le pénétromètre Panda® offre des perspectives intéressantes en termes de 
collecte de données et de caractérisation des sols, les possibilités offertes par les 
méthodes d'analyse et de traitement du profil pénétrométrique n'ont cependant jamais été 
étudiées et appliquées au profit de l'exploitation et de l'interprétation de ce genre d'essai. 

L’objectif de ce travail est donc d’évaluer le potentiel de cet outil en vue de l’obtention 
d’un modèle de terrain tout en répondant aux questions principales de la reconnaissance 
géotechnique : quelle est la nature et la disposition des formations homogènes de sol 
dans le terrain étudié et quelles sont leurs propriétés mécaniques. 

1.1.  Démarche proposée  

La démarche générale proposée ici (cf. Fig.1) pour répondre à la problématique 
abordée, s’appuie sur les données issues des sondages au pénétromètre Panda®. Celle-
ci est structurée en 3 étapes principales : 

i. Identification automatique des unités homogènes de sol. 
ii. Développement des outils basés sur les techniques d'intelligence artificielle afin 

d’identifier la nature des matériaux traversés pour chaque formation identifiée à 
l'étape (i) (Sastre et al. 2016).  

iii. Proposition d’une répartition dans l'espace de la résistance de pointe qd tout en 
intégrant l'incertitude spatiale et aboutir à un modèle de terrain probabiliste en 3D. 
 

 
Figure 1. Schéma de la démarche proposée. 



Journées Nationales de Géotechnique et de Géologie de l’Ingénieur – Champs-sur-Marne 2018 

 

 

 3 

2. Le site expérimental et la campagne d’essais 

Le terrain expérimental, servant de support pour valider les outils d’analyse développés, 
se situe au sud de la ville de Castelló d'Empúries dans la province de Gérone en Espagne 
(cf. Fig.2). Il est situé dans une plaine alluviale formant un dépôt de type deltaïque 
méditerranéen. En profondeur il existe une alternance d'horizons principalement sableux 
et des horizons formés par des dépôts limoneux et argileux, avec des passages 
graveleux. 

Une campagne de 8 sondages pénétrométriques, dont la profondeur moyenne 
d’investigation est de 5m, a été effectuée (Fig.2, à droite). La nappe phréatique a été 
repérée à 2.5m. Par ailleurs, deux essais Panda (P2 S3, P2 S5) ont été réalisés à 
proximité des essais réalisés au piézocône (CPTU1 et CPTU2) (cf. Fig.2 à droite).  

 
Figure 2. Situation géographique du terrain d’étude et schéma d’implantation des essais. 

Sur ce site, on dispose également de la caractérisation au laboratoire des sols réalisée 
à partir de plusieurs échantillons carottés (cf. Tab.1). On peut remarquer qu’entre 2 et 6m, 
on trouve des argiles peu plastiques (Ap), classées d'après le système de classification 
LPC/USCS (Schon, 1965), et un sol sableux (S) en surface (0 - 2 m). 

Tableau 1. Paramètres d’identification des échantillons prélevés 

Profondeur (m) Description 
passant (%) à Limites d’Atterberg 

75µm 2µm WL (%) IP (%) 

0.5 – 0.7 Sable et limons argileux 47.3 15.6 - - 

2.6 – 2.8 Limons argileux 87.5 33.23 34.9 12.1 

4.2 – 4.3 Argiles limoneux 95.8 55.74 49.4 25.3 

5.8 – 5.9 Limons argileux 68.2 31.62 25.3 9.7 

 

3. Identification automatique des couches de sol homogènes 

Une méthode automatisée pour la détection des unités homogènes du terrain traversé 
lors d’un sondage et à partir de l'analyse des pénétrogrammes Panda® est ici proposée. 
Pour ce faire une approche basée sur le test paramétrique t de Student, nommé Tratio, 
(Webster et Wong, 1969) est retenue. Celui-ci s’appuie sur la comparaison de la 
moyenne de deux échantillons et il est défini comme :  
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Avec n1 et n2 la taille des échantillons à comparer, µ1 et µ2 leur moyenne, σ1
2 et σ2
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variance et Τw la racine de la variance pondérée des échantillons définie ci-dessous :  
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Par ailleurs, cette technique de découpage du profil est basée sur l’utilisation d’une 
fenêtre glissante de taille fixe Wd et divisée en son centre do en deux parties contenant 
les deux échantillons à comparer. Dans la pratique on fait glisser la fenêtre le long du 
profil pénétrométrique avec un pas de décalage égal à l'intervalle de mesure. On obtient 
ainsi une courbe qui trace l'évolution de la statistique Tratio en fonction de la profondeur 
où les maxima locaux (pics du profil) sont censés représenter les limites entre couches.  

Nous avons automatisé la méthode à l’aide d’une valeur seuil nous permettant 
d’identifier les maxima locaux du profil qui représentent une interface entre couches ou 
unités géotechniques. Dans ce travail le test est appliqué au logarithme de la résistance 
de pointe qd, avec une valeur seuil égale à 10 et une taille de fenêtre de 1m.  

La Fig. 3 présente les résultats de la stratigraphie issue de l’application de la méthode 
Tratio au sondage S3, ce qui est en accord avec la lithologie du site. On peut remarquer 
une première interface correspondant à l’affaiblissement du qd à partir de 0.8m et 
l’interface à 1.5 m indique la transition entre les matériaux sableux et fins.  

Dans la même figure, les résultats issus de l’analyse du pénétrogramme Panda® sont 
comparés à ceux obtenus à partir du sondage CPTU2 et utilisant l’abaque normalisé de 
Robertson, sur la base du profil de résistance au cône normalisé Qtn et du rapport de 
frottement Fr (Robertson, 1990). On peut constater une bonne correspondance entre ces 
deux approches. Notamment, la troisième interface détectée par l’essai Panda® est 
située à la même profondeur que la transition entre les limons argileux et les argiles 
indiquée selon la classification proposée par Robertson.  

 
Figure 3. Comparaison des stratigraphies déterminées à partir des sondages CPTU2 et Panda S3 

Les profondeurs des limites de couches détectées à l’aide de la méthode Tratio sur 
l’ensemble de 8 sondages Panda® sont regroupées dans ce qui suit (Tab. 2).  

Tableau 2. Synthèse des résultats – profondeur (m) 
P2 S1 P2 S2 P2S3 P2 S4 P2 S5 P2 S6 P2 S7 P2 S8 Moyenne 

- - 0.8 1.0 1.1 0.8 - - 0.9±0.1 

1.9 1.8 1.5 1.6 1.8 1.8 1.6 1.3 1.7±0.1 

3.1 2.8 2.7 - - 2.5 2.7 - 2.8±0.2 

Pour ce terrain, d’origine deltaïque et présentant une homogénéité horizontale, 
l’approche envisagée montre une répétabilité satisfaisante quant à la profondeur des 
interfaces identifiées à partir de la campagne de sondages réalisée. Cette technique est 
ainsi peu sensible à la variabilité naturelle du terrain.  
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4. Identification des sols à partir du signal Panda®  

A la différence de l'essai de pénétration au carottier (SPT), le Panda® ne permet pas le 
prélèvement des échantillons. On ne dispose ainsi d'aucune information sur la nature du 
sol traversé et l’essai est dit « aveugle». D’ailleurs, dans l'état actuel des connaissances, 
le seul paramètre mesuré qd est insuffisant pour évaluer qualitativement la nature du sol 
(Waschkowski, 1983). Néanmoins, on sait que la nature du sol a une influence sur les 
résultats de l’essai de pénétration et plus précisément sur la dispersion et les variations à 
faibles longueurs d’onde, la « signature » d'un pénétrogramme, pouvant ainsi être reliée 
au type et à l'état des matériaux traversés. 

Par ailleurs, l'utilisation conjointe de quantités massives d'information et de techniques 
basées sur l’intelligence artificielle permettraient d’améliorer l'interprétation des essais 
géotechniques. Du fait notamment de sa résolution d'acquisition et de sa rapidité de mise 
en œuvre, le Panda® s'avère ainsi être un essai particulièrement adapté à 
l’implémentation de ces approches. Une démarche basée sur l'application de ces 
techniques a été mise en œuvre afin de caractériser la nature du sol ausculté.  

Pour ce faire, une méthodologie de classification automatique basée sur des 
algorithmes de réseaux de neurones artificiels (RNA) a été proposée (Sastre et al. 2016). 
On cherche à créer ainsi une mémoire associative intelligente grâce aux RNA entre les 
pénétrogrammes et les classes de sol à définir selon les objectifs visés. La Fig.4 présente 
un schéma descriptif de la méthodologie proposée. Sa mise en œuvre peut être 
décomposée en plusieurs étapes : 

1.  Acquisition de données : la première phase consiste à créer une banque de 
données qui constituera la base d’apprentissage et de test du modèle. Dans notre 
cas, cette base est constituée des essais Panda® pour lesquels les paramètres 
d’identification du sol testé, mesurés soit en laboratoire sur des matériaux réels 
«modèles» soit sur des échantillons d’essais réalisés in situ, sont connus.  
2.  Définition des entrées du modèle : on applique différentes techniques d’analyse 
du signal au pénétrogramme. L’objectif est de rechercher un paramétrage qui sera 
l'identifiant de l'essai de pénétration vis-à-vis du système de classification. 
3.  Apprentissage du système : il s’agit de l’entraînement du RNA grâce à la base de 
données nous permettant de retrouver les classes de sols définies préalablement. 
Dans notre cas, nous avons défini quatre classes de sols (Tab. 3) selon les seuils 
granulométriques du système de classification GTR (NF P 11-300).  

Tableau 3. Identification des sols à partir du signal Panda® - Classes de sortie proposées 
Nº de la classe Nature du sol GTR Passant à 80µm Passant à 2mm 

Classe 1 Sols fins A1 à A4 >35% 100% 

Classe 2 Sables et graves avec fines B5, B6 >12% 100% 

Classe 3 Sables avec fins D1, B1 et B2 ≤ 12% > 70% 

Classe 4 Graves D2, B3 et B4 ≤ 12% ≤ 70% 

Les résultats de l’algorithme de découpage couplé avec la classification fournie par les 
RNA et appliqué aux sondages S3 et S5 sont présentés dans la Fig. 5. De même, les 
résultats obtenus pour le reste des sondages sont très similaires à ceux présentés ici. On 
peut remarquer que les formations situées sous la première unité de terrain sont classées 
par le RNA comme « Sols fins (classe 1) », ce qui est en bonne correspondance avec les 
résultats des analyses granulométriques des échantillons prélevés (Tab. 1). De manière 
générale, la méthode développée donne des résultats satisfaisants mais rencontre plus 
de difficultés pour classer correctement les pénétrogrammes sur les matériaux sableux 
avec fines. En effet, la première formation en surface du terrain, la plus compacte, est 
classée comme « Grave (classe 4) », ce qui est incorrect. Cette difficulté est 
probablement due au déficit de représentativité de cette classe dans la base 
d’apprentissage utilisée.  
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Figure 4. Principe de la méthodologie proposée Figure 5. Classification du RNA 

5. Modélisation probabiliste de la variabilité spatiale 

Cette dernière étape est consacrée à la production d'un modèle de terrain basé sur la 
modélisation et la simulation du profil de résistance de pointe Panda® en prenant en 
compte la variabilité spatiale. On retiendra comme hypothèse de base que la variable 
d'étude qd peut être représentée par un champ aléatoire homogène (Vanmarcke 1977).  

La variabilité spatiale peut être définie grâce à 3 paramètres statistiques : 
1.  l’espérance ou moyenne µ; 
2.  la variance σ2, l’écart-type σ ou le coefficient de variation CV; 
3.  l’échelle de fluctuation ou longueur de corrélation θ.  

D’une manière générale l'échelle de fluctuation peut être définie comme la distance au-
delà de laquelle les paramètres mesurés ne présentent pas de corrélation. Ce paramètre 
permet ainsi de caractériser la structure spatiale des paramètres géotechniques. L’échelle 
de fluctuation peut être estimée en ajustant un modèle théorique d’autocorrélation à 
l’autocorrélogramme empirique (Vanmarcke 1977).  

La théorie des champs permet ainsi de générer des simulations ou des modèles 
numériques du terrain grâce à l'inférence statistique des données mesurées ou à partir 
des valeurs rapportées dans la littérature. Par ailleurs, il est possible de conditionner un 
champ aléatoire afin d’obtenir des simulations conditionnelles, notés par VCS(X). Les 
données expérimentales sont ainsi respectées à l’aide du krigeage, technique 
d’estimation issue de la géostatistique (Journel et Huijbregts 1978) : 

 

  )()()()( XVXVXVXV kususkdCS    (3) 
 

Le principe est le suivant : 
i. tirage d'une simulation du champ aléatoire Vus(X) 
ii. krigeage aux points de simulation en utilisant les valeurs observées Vkd(X) 
iii. krigeage aux points de simulation en utilisant les valeurs de la simulation non 

conditionnelle aux points observés Vkus(X) 
On suppose que la résistance de pointe dynamique suit une loi log-normale comme en 
témoignent les travaux de recherche antérieurs menés pour l'essai Panda (ex. Chaigneau 
2001). De même, la moyenne du champ est représentée par un modèle linéaire selon la 
profondeur et la fonction de décroissance exponentielle est retenue afin de modéliser la 
fonction d’autocorrélation. 

Pour le site expérimental étudié et sur la base des stratigraphies déduites lors de la 
première étape de la méthode proposée, un modèle de terrain à 4 couches a été choisi. 
La profondeur moyenne de chaque couche a été obtenue en faisant l’hypothèse de 
couches horizontales. Un modèle orthotrope a été retenu afin de tenir compte de 
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l’anisotropie entre les directions horizontale et verticale. Le champ est conditionné par les 
sondages Panda® sur place à l’aide du krigeage.  

Parmi l’ensemble de huit sondages réalisés, six ont été retenus pour l’estimation des 
paramètres du champ et les deux autres (S3 et S8) ont été utilisés pour valider l’approche 
proposée. La valeur de l’échelle de fluctuation horizontale est égale à 13 m dans le plan 
horizontal. Les autres paramètres du champ ln(qd), pour chacune des unités homogènes, 
sont regroupés dans le tableau (Tab. 4).  

Tableau 4. Paramètres du champ aléatoire 
Unité Profondeur (m) Moyenne Variance Échelle de fluctuation verticale (m) 

U1 0.0 – 0.9 2.17+0.92 z 0.21 0.11 

U2 0.9 – 1.7 3.58-1.20 z 0.08 0.06 

U3 1.7 – 2.8 1.64-0.56 z 0.21 0.16 

U3 2.8 - 5.0 0.50-0.02 z 0.1 0.14 

Dans la Fig. 6 on présente une comparaison qualitative entre les sondages réels et les 
deux sondages virtuels simulés à la position des sondages de validation S3 et S8. Cette 
bonne correspondance tient autant du modèle que des sondages conditionnants. Par 
ailleurs et pour le cas étudié, le nombre de 6 sondages semble suffisant afin de proposer 
des versions plausibles d'un sondage non réalisé. À titre d’exemple dans la Fig. 7 on 
présente l’estimation 3D moyenne de la résistance qd sur 500 tirages réalisés. 

 

Figure 6. Pénétrogrammes mesurés et simulés Figure 7. Moyenne du modèle 3D 
 

6. Conclusions 

Ce travail a porté sur la reconnaissance des sols à faible profondeur à l'aide de l'essai de 
pénétration Panda®. Une méthode globale permettant d'exploiter les mesures issues 
d'une campagne de sondages pénétrométriques en vue de bâtir un modèle géotechnique 
3D du terrain a été présentée. Celle-ci a été appliquée aux essais réalisés sur un terrain 
expérimental, d’origine deltaïque, à Castelló d'Empúries (Gérone, Espagne).  

La première étape de la méthode, consistant à découper automatiquement le signal 
pénétrométrique par une approche statistique. Elle s’avère être une procédure objective 
et permet de rationaliser la procédure de reconnaissance des sols afin d’identifier des 
horizons homogènes mécaniquement. Dans le cadre d’une campagne géotechnique de 
base, cette coupe de terrain est un moyen complémentaire aux profils de terrain déduits à 
partir de l’étude lithologique des sols effectuée par les biais des forages. 

Bien que la seule résistance de pointe qd semble insuffisante pour identifier la nature 
du sol traversé, nous avons proposé, dans la deuxième étape de notre démarche, une 
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méthodologie de classification automatique des sols constituant les horizons homogènes 
détectés à l’étape 1, et basée sur des techniques d'intelligence artificielle.  

Si cette démarche s’avère intéressante, au vu de nos résultats, les possibilités offertes 
par cette approche sont limitées lorsqu’on l’applique à la seule valeur de la résistance de 
pointe qd. Toutefois, l’application de cette technique à un essai tel que le Panda3® (Benz-
Navarrete, 2009) (Escobar, 2015), fournissant un plus grand nombre de paramètres, ou 
encore aux données issues du couplage avec d’autres techniques telles que la géo-
endoscopie (Breul et Gourvès, 1999) permettrait de compléter avantageusement les 
données et d'améliorer significativement l'efficacité de la procédure. 

Enfin, sur la base d’une campagne relativement modeste d’essais au pénétromètre 
Panda®, la troisième étape de la démarche permet de modéliser la variabilité spatiale de 
la résistance de pointe au sein de chacune des unités du modèle de terrain retenu. Les 
simulations conditionnées de ce champ peuvent être introduites dans le calcul 
probabiliste des ouvrages. La poursuite de ces travaux devrait permettre d'étudier les 
possibilités d'incorporer la variabilité spatiale des caractéristiques mécaniques du sol 
déterminées à l'aide du Panda®, dans des méthodes de calcul fiabilistes. Lorsque les 
couches présentent un fort pendage,  la méthode reste applicable mais des algorithmes 
d’interpolation sont nécessaires pour caractériser le toit de différentes formations.    
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