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ÉSUMÉ

 

Une méthodologie de détermination des valeurs des
paramètres, d’une loi de comportement adaptée aux
sables et introduite dans le progiciel de calcul par élé-
ments finis CÉSAR-LCPC est proposée. Cette loi élas-
toplastique avec écrouissage, élaborée par
P. Vermeer, présente l’avantage de possèder un faible
nombre de paramètres. Plusieurs études ont montré la
simplicité de mise en œuvre de ce modèle et ses bon-
nes performances dans la simulation d’essais de labo-
ratoire. Ce modèle, le rôle de chaque paramètre et la
manière de les déterminer sont décrits. Par ailleurs,
une étude de sensibilité a permis d’aboutir à un prin-
cipe d’optimisation des simulations théoriques des
essais triaxiaux. Malgré son faible nombre de paramè-
tres, la loi de Vermeer est performante et actuellement
peu employée dans la modélisation des ouvrages. Cet
article a aussi pour objectif de contribuer à son applica-
tion en géotechnique.

D

 

OMAINE 

 

: Géotechnique et risques naturels.

 

A

 

BSTRACT

 

A methodology for determining parameter values of a
constitutive law adapted to sands, and introduced into
the CESAR-LCPC finite element computation
software, is described herein. This elastoplastic law
with strain hardening, proposed by P. Vermeer, offers
the advantage of a low number of parameters. Several
studies have demonstrated this model's ease of imple-
mentation and high level of performance in laboratory
test simulations. This article discusses not only the
model itself, but also the role of each input parameter
and the parameter-determination procedure employed.
Moreover, a sensitivity analysis has allowed us to
develop a principle for optimizing the theoretical simu-
lation of triaxial testing. Vermeer's law proves effective
despite the small number of parameters ; nonetheless,
its applications in the field of geotechnical modeling
remain quite limited. This article is also intended to fur-
ther the extent of such applications.

 

Introduction

 

Dans un article récent (Mestat et Arafati, 2000), une méthodologie de détermination des valeurs
des paramètres a été proposée pour la loi de comportement de Nova (version 1982). Cette métho-
dologie était adaptée à l’interprétation des essais courants de mécanique des sols (essai de compres-
sion triaxiale drainé et essai isotrope) et ne faisait pas appel aux essais sophistiqués utilisés fré-
quemment par les auteurs de modèle, à la fois pour l’élaboration des équations, l’identification des
paramètres et la validation. La finalité n’est plus de vérifier les performances d’un modèle, mais de
l’appliquer dans des situations de type « bureau d’études ». Dans un tel cadre, ce travail méthodo-
logique allait de pair avec l’introduction de la loi de Nova dans le progiciel de calcul par éléments
finis CÉSAR-LCPC (module de calcul en comportement non linéaire, MCNL). 

Une méthodologie adaptée doit donc être développée pour toute nouvelle loi de comportement
introduite dans CÉSAR-LCPC. Pour les lois les plus courantes, les paramètres sont bien connus :
module de déformation, coefficient de Poisson, cohésion, angles de frottement et de dilatance. La
détermination de leur valeur pour une couche de sol donnée ne pose pas de problème particulier, à
condition d’avoir suffisamment d’informations géotechniques. En revanche, pour les lois plus com-
plexes comme les modèles élastoplastiques à plusieurs mécanismes, il y a lieu de développer une
démarche originale pour tirer le meilleur parti des résultats des essais courants de mécanique des
sols. Parmi ces modèles, la loi de comportement de Vermeer a fait l’objet de plusieurs applications
prometteuses au Laboratoire Central des Ponts et Chaussées (LCPC) et à l’École centrale de
Nantes : pour l'étude des pieux sous charge axiale (Tadjbakhsh et Frank, 1985), pour la simulation
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d'essais triaxiaux (Mestat, 1990 ; Youssef, 1991 ; Mestat, 1992) et pour le calcul d'ouvrages souter-
rains (Abdallah, 1997 ; Riou et Chambon, 1998 ; Riou et 

 

al

 

., 1998). Ces applications ont nécessité
le développement d’une méthodologie originale et pratique pour estimer les valeurs des paramètres.

 

Description de la loi de Vermeer

 

La loi de comportement, développée par P. Vermeer, est un modèle élastoplastique à deux méca-
nismes écrouissables. Le premier mécanisme, fondé sur le critère de rupture défini par Matsuoka et
Nakaï (1974), est purement déviatorique (mécanisme de cisaillement) et le second purement volu-
mique (mécanisme de consolidation). Le domaine de validité de ce modèle, tel qu'il a pu être
exploré par son auteur, est constitué par l'ensemble des sollicitations qui comportent au plus un ou
deux cycles de chargement-déchargement-rechargement (Vermeer, 1982). Sa formulation, les
hypothèses qui ont permis son élaboration et le rôle de chaque paramètre sont précisés ci-après.

 

Critère de rupture en cisaillement

 

Afin de décrire la surface de rupture dans l’espace des contraintes principales, P. Vermeer a utilisé
le critère tridimensionnel de Matsuoka et Nakaï, adapté aux milieux pulvérulents (fig. 1) :

où p, II

 

2

 

 et III

 

3

 

 représentent les invariants du tenseur des contraintes dans la convention de signe de
la mécanique des milieux continus (compression négative) :

où

 

➢  

 

σ

 

1

 

, 

 

σ

 

2

 

 et 

 

σ

 

3

 

 sont les contraintes principales,

 

➢  

 

q est le déviateur des contraintes.

 

Fig. 1 - Représentation du critère de Matsuoka et Nakaï (1974).

 

Le paramètre A

 

r

 

 définit la surface de charge dans l’espace des contraintes. Dans le cas d’un essai
triaxial de compression sur une éprouvette cylindrique (

 

σ

 

2 

 

= 

 

σ

 

3

 

), ce paramètre peut être relié à

σ1

σ2 σ3

Critère de Mohr-Coulomb

Critère de Matsuoka et Nakaï
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l’angle de frottement au pic 

 

ϕ

 

p

 

 qui intervient dans le critère de Mohr-Coulomb. Puisque la cohésion
est nulle, on a les relations suivantes à la rupture :

.

 

Surface de charge de cisaillement

 

En supposant l’existence d’une surface de charge qui évolue de manière homothétique vers le cri-
tère de Matsuoka et Nakaï, et à l’intérieur de laquelle le comportement du sol est réversible, l’équa-
tion de la surface de charge de cisaillement est de la forme :

où k est une variable interne qui pilote l’évolution de la surface dans l’espace des contraintes et qui
est reliée à la déformation plastique de cisaillement ( ).

Par analogie avec le paramètreA

 

r

 

, la fonction A(k) est définie par la relation suivante :

où  est le rapport du déviateur des contraintes à la pression moyenne pour le seuil de

plasticité actuel. Il reste à relier ce rapport à la déformation plastique pour compléter le modèle.
Pour cela, P. Vermeer exploite les analyses réalisées sur les essais triaxiaux à pression moyenne
constante. En particulier, Kondner et Zelasko (1963) et Brinch Hansen (1965) ont proposé de
décrire les résultats de ces essais par l’équation :

où

 

➢  

 

α

 

 et 

 

β

 

 sont deux paramètres ; 

 

➢  

 

p

 

0

 

 est une pression de référence ;

 

➢  

 

γ

 

 représente la distorsion totale (

 

γ 

 

= 

 

ε

 

1 

 

–

 

 

 

ε

 

3

 

 pour les essais considérés).

L’inversion de cette équation permet d’exprimer la distorsion en fonction de l’état de contraintes :

Finalement, P. Vermeer décompose cette quantité en une partie élastique et une partie plastique. 

εij
pc

q
p
--- 
 

actuel
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❶

 

  Pour la partie élastique, correspondant aux faibles déformations, un développement limité est
considéré pour les faibles cisaillements (q petit), on obtient alors :

 

❷

 

  La partie plastique est déduite par différence entre la distorsion totale et la distorsion élastique :

Pour obtenir la relation cherchée, il reste à inverser l’équation précédente en identifiant l’état de
contrainte  à l’état de contraintes actuel sur la surface de charge . Il vient alors :

 

χ

 

 apparaît ainsi comme la variable interne recherchée.

La surface de charge est alors complètement définie pour des conditions triaxiales sur des éprou-
vettes cylindriques (

 

σ

 

2 

 

= 

 

σ

 

3

 

). Pour établir un modèle tridimensionnel, il faut généraliser l’écriture
en remplaçant la distorsion  par l’invariant suivant :

L’équation de la surface de charge dans l’espace des contraintes principales est la suivante :

L’équation de la surface de charge peut aussi s’exprimer en fonction de l’angle de frottement mobi-
lisé 

 

ϕ

 

m 

 

: 

 

Comportement élastique

 

L’expression de la distorsion élastique 

 

γ

 

e

 

 établie précédemment est à la base de la formulation du
comportement élastique du modèle de Vermeer. L’équation de comportement valable pour l’essai
triaxial de compression sur éprouvette cylindrique

q
p
--- 
  q

p
--- 
 

actuel

γpc ε1
pc

ε3
pc

–=
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est généralisée au cas tridimensionnel en supposant la relation suivante :

où

 

➢  

 

σ

 

n

 

 est l’invariant défini par : 

 

➢  

 

 est un paramètre tel que : 

Cette équation de comportement définit une élasticité non linéaire. Il s’agit en fait d’une hyperélas-
ticité, puisqu’il existe un potentiel dont peut dériver l’expression précédente. Par rapport au schéma
classique de Hooke, on remarque que l’équivalent du coefficient de Poisson dans le modèle de
Vermeer est nul.

Pour être cohérent, ce raisonnement conduit à modifier l’expression de la variable 

 

χ

 

 intervenant
dans la définition de la surface de charge de cisaillement et à la remplacer par :

 

Surface de charge de consolidation

 

La surface de charge de cisaillement établie précédemment n’est toutefois pas suffisante pour
décrire l’ensemble des seuils de plasticité et des irréversibilités. En particulier, les essais de com-
pression isotrope mettent en évidence un second mécanisme plastique, dit volumique ou de conso-
lidation. La simulation de la déformation volumique par la relation 

est généralement satisfaisante. 

 

κ

 

 est un paramètre à caler sur les résultats expérimentaux.
P. Vermeer déduit alors que la déformation plastique volumique s’écrit sous la forme :

où  est un paramètre à déterminer. Par conséquent, la surface de charge liée au mécanisme de
consolidation s’écrit : 

La loi de comportement de Vermeer admet que le mécanisme de consolidation est associé. Autre-
ment dit, le potentiel plastique est égal à la surface de charge. L’évolution de l’écrouissage est
gouvernée par la déformation plastique volumique . Par ailleurs, comme les deux mécanismes
ont été construits de manière indépendante, les déformations plastiques sont la somme des défor-
mations plastiques de cisaillement et des déformations plastiques de consolidation :

ε0
e

ε0
e

εvol
pv
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Potentiel plastique pour le mécanisme de cisaillement

Plusieurs études expérimentales ont montré que les directions des déformations plastiques n’étaient
pas normales à la surface de charge. Le potentiel plastique associé au mécanisme de cisaillement n’est
donc pas associé. P. Vermeer a ainsi proposé un potentiel plastique similaire à la surface de charge :

où ψm est l'angle de dilatance mobilisé, variable avec l’état de déformations plastiques.
L’exposant * signifie que les invariants p, II2 et III3 concernent le tenseur (σij – aδij) et non le ten-
seur des contraintes (σij). Le potentiel est identique à la surface de charge lorsque a = 0 et ϕm = ψm.
La variable a est déterminée par l’équation : . Les variables a et ψm sont considé-
rées comme des constantes lors de la dérivation du potentiel nécessaire au calcul des déformations
plastiques (application de la règle d’écoulement).

Dans le cas d’un essai triaxial de compression sur une éprouvette cylindrique (σ1 ≥ σ3 et σ2 = σ3),
le rapport des incréments de déformations plastiques s’écrit :

Par ailleurs, Rowe (1971) a proposé une relation pour décrire l’écoulement plastique dans le cas de
l’essai triaxial de compression. Cette relation dite « contrainte-dilatance » s’écrit :

où ϕcv est l'angle de frottement à volume constant. Pour achever la construction du potentiel plasti-
que, P. Vermeer identifie l’expression théorique du rapport des incréments de déformations plasti-
ques et l’expression empirique de Rowe. Puis, en reliant le rapport de contraintes σ1/σ3 à l’angle de
frottement mobilisé ϕm, on aboutit à la relation suivante entre les angles de frottement et de dilatance :

soit finalement, la relation cherchée permettant le calcul de l’angle de dilatance :

Malgré la pertinence de l’approche théorique de P. Vermeer, le calcul de la variable « a » pour un
chemin de contraintes quelconque conduit à résoudre une équation du troisième degré pour chaque
état de contraintes ; autant dire que la durée des calculs risque de devenir très importante dans le
cas d’une modélisation par éléments finis d’un ouvrage. Pour cette raison, P. Vermeer a proposé
une autre expression pour le potentiel plastique en négligeant certains termes de l’équation du
deuxième degré. Cette simplification présente aussi l’avantage de séparer la variable « a » des
invariants de contraintes et de la considérer comme une constante pour la dérivation dans la loi
d’écoulement. Finalement, le potentiel plastique du mécanisme de cisaillement est écrit par
P. Vermeer sous la forme

Gc σij εkl
pc

,( ) 0=
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Paramètres de la loi de Vermeer

Finalement, les paramètres de la loi sont les suivants : ϕp, ϕcv, , , β et un paramètre lié à l’état
initial p0. Ce faible nombre constitue un atout important pour l'utilisation de la loi de comportement
de Vermeer.

La pression p0 peut être déterminée de deux manières :

❶  soit on considère que cette pression est une pression de référence liée à la déformation de réfé-
rence  ;
❷  soit on rattache la pression p0 à l’état initial des contraintes effectives du sol en place

, en écrivant que l’état de contraintes initial est situé sur la surface de charge du mé-
canisme volumique : . Dans ce cas, la déformation de référence  n’est plus
directement reliée à la pression p0, puisqu’à l’état initial on suppose que les déformations sont nul-
les.  devient un paramètre indépendant de p0.

Il est conseillé de relier le paramètre p0 à l’état initial du sol en place. Dans le cas d’un essai
triaxial, la pression p0 est égale à la pression de confinement appliquée.

Les calculs d’ouvrages avec le progiciel CÉSAR-LCPC ont montré que l’élasticité non linéaire com-
binée à l’élastoplasticité conduit à des durées de calcul souvent très longues. Aussi, pour réduire ces
coûts, il a été proposé de linéariser la partie élastique de la loi de Vermeer. L’élasticité non linéaire
originale a été remplacée par une élasticité linéaire. Il a été montré que la différence avec la réponse
originale du modèle n’est sensible que pour les très faibles contraintes ou pour des phases de déchar-
gement. En effet, les paramètres de Vermeer sont déterminés avec l’hypothèse que l’état de contrain-
tes initial est sur la surface de charge. Dès la première phase de chargement, la plasticité se développe
et rapidement les déformations élastiques deviennent négligeables. Néanmoins, il fallait analyser
l’influence de l’élasticité linéaire sur les simulations théoriques. Il restera à justifier cette hypothèse
sur des configurations plus complexes. On notera également que cette linéarisation de l’élasticité
n’augmente pas le nombre de paramètres de la loi de comportement, car le module d’Young E et le
coefficient de Poisson ν seront estimés à partir des autres paramètres (cf. tableau VIII).

Méthodologie de détermination des paramètres de la loi de Vermeer

La méthodologie proposée consiste à repren-
dre la démarche adoptée pour le modèle de
Nova (Mestat et Arafati, 2000) ; à savoir esti-
mer des tangentes et des asymptotes en cer-
tains points géométriquement représentatifs
sur les courbes contraintes-déformations
déduites d'un essai triaxial de compression
axisymétrique drainé avec une phase de
déchargement : (σ1, σ1 – σ3) et (ε1, εv). Les
points de calage sont choisis afin d'encadrer
les courbes expérimentales par des tangentes
et asymptotes théoriques (tableaux I à III et
valeurs Ai sur la figure 2) :

➢  déchargement complet (q = 0 et dq ≤ 0).
Dans ce cas, la courbe théorique est souvent
raide et proche d'une droite comme la courbe
expérimentale (tableau II) ;
➢  chargement initial (q = 0 et dq > 0). Deux
cas se présentent : soit l'état de contraintes ini-
tial est à l'intérieur du domaine élastique, soit
il est sur la surface de charge dans le domaine plastique (tableau II) ;
➢  cisaillement maximal à la rupture (tableau III) ;
➢  dilatance à la rupture (tableau III).

ε0
e

ε0
c

ε0
e

σ′v0 σ′h0,( )
Fv σ′ij εkl

p
, 0=( ) 0= ε0

e

ε0
e

q

A1
A3

A4

A5

A2

A0

ε1

ε1

εv

o
o

Fig. 2 - Résultats d’un essai triaxial de compression 
et tangentes significatives aux courbes 

contraintes-déformations.
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Le calcul théorique des tangentes et asymptotes aux courbes triaxiales est fondé sur les relations
différentielles exprimant les incréments de déformation en fonction du rapport de contraintes
η = q/p et de son accroissement (tableau I). Ces équations permettent de calculer les tangentes
théoriques, en tout point des courbes triaxiales, en considérant les expressions :

Ensuite, aux points de calage, on identifie les expressions analytiques des quantités

, et les valeurs de ces tangentes estimées sur les courbes expérimentales

(tableaux II et III). On obtient ainsi, directement ou indirectement, les valeurs des paramètres.
L'étude des expressions théoriques des tangentes aux courbes triaxiales permet de préciser le rôle
de chaque paramètre (tableau IV) et de faciliter l'identification lorsqu’un ajustement s’impose.

L'analyse de l'essai de compression isotrope est aussi très utile pour déterminer la valeur des para-

mètres ,  et β. En effet, la loi de Vermeer représente cet essai par les relations :

  

TABLEAU I

Simulation théorique d'un essai triaxial axisymétrique drainé : expressions des déformations élastiques 

et plastiques pour le modèle de Vermeer (1982)

Élasticité

      

Plasticité :

mécanisme

volumique

  

Plasticité :

mécanisme

déviatorique

     

ε0
e

ε0
c
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Les calculs théoriques sont relativement simples. À partir des tableaux II et III, on peut estimer les
paramètres , , β, ϕp et ϕcv (tableau V). Les quantités notées Ai représentent les tangentes aux
points de calage définis sur la figure 3.

L'ensemble de ces relations permet de déterminer les cinq paramètres adimensionnels de la loi de
Vermeer à partir des résultats d'un essai axisymétrique de compression. Lorsque plusieurs essais
sont disponibles, les paramètres sont déterminés pour chaque essai. Puis, des valeurs moyennes
sont déduites par une simple moyenne arithmétique. Si un cycle de déchargement-rechargement a
été réalisé ou si un essai de compression isotrope est disponible, on peut aboutir à plusieurs valeurs
pour les paramètres  et β. Là encore, la simplicité doit être de mise et conduit à considérer des
valeurs moyennes.

La confrontation des simulations théoriques avec les résultats expérimentaux valide ou non les
valeurs ainsi estimées. Si la confrontation n'est pas satisfaisante, il convient d'ajuster les valeurs des
paramètres pour améliorer les résultats théoriques. La recherche d’une procédure d’optimisation
passe par l’analyse du rôle de chaque paramètre dans les simulations.

TABLEAU II

Expressions des tangentes initiales aux courbes théoriques

Cas d’un essai de compression drainé

Cas d'un déchargement total ou d'un chargement initial dans le 

domaine élastique (η = 0 ; dq > 0 ou dq < 0)

Cas d'un chargement initial amenant dans le domaine plastique 

(η = 0 et dq > 0)

TABLEAU III

Expressions des asymptotes aux courbes théoriques

Rupture de l'éprouvette

Dilatance à la rupture

TABLEAU IV

Rôle des paramètres de Vermeer dans la simulation d'un essai triaxial

Paramètre Rôle du paramètre

Paramètre lié à la déformation volumique élastique

Paramètre lié à la déformation volumique plastique

β Paramètre lié aux déformations volumiques élastique et plastique

ϕcv Paramètre lié à l'état caractéristique du sable et à la dilatance (rupture)

ϕp Paramètre lié au cisaillement maximal (rupture) : angle de frottement au pic

ε0
e

ε0
c

ε0
e

ε0
c

ε0
e
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Influence des paramètres sur les simulations

Une étude systématique de l’influence des paramètres de la loi de Vermeer sur les simulations des
essais triaxiaux de compression drainés a été réalisée en faisant varier chaque paramètre de + 25 %
ou de – 25 %, et en gardant constant les autres. Cette analyse a été effectuée à l’aide du logiciel
LOIS-LCPC, développé pour simuler les essais triaxiaux par diverses lois de comportement (Mes-
tat, 1990 ; Arafati, 1996). Les tableaux VI et VII résument les influences de chaque paramètre et les
figures 3 à 9 regroupent les résultats. Comme pour la loi de Nova (Mestat et Arafati, 2000), les
variations de chaque paramètre modifient au moins une courbe théorique (cisaillement ou volume).
Les paramètres , ϕcv et ϕp ont une incidence plus significative que d’autres sur les réponses

TABLEAU V 

Détermination des valeurs des paramètres de la loi de Vermeer

Essai Exploitation des courbes Expression des paramètres

Compression 

isotrope

Selon la loi de Vermeer, les points 

élastiques et plastiques forment 

des droites dans un plan logarithmique

Régressions linéaires dans un diagramme 

Essai triaxial de 

compression drainé

Partie des courbes en déchargement 

(points dans le domaine élastique)

Essai triaxial de 

compression drainé

Partie des courbes en chargement dans 

le domaine plastique

État de rupture

Asymptote à la courbe de dilatance

ε0
c

TABLEAU VI

Influence des paramètres de la loi de Vermeer sur la courbe (ε1, q/p)

Paramètres Types d’influence pour une variation de ± 25 %

Peu d’influence sur l’ensemble de la courbe

Influence notable sur la courbure intermédiaire (entre l’état initial et la rupture)

β, ϕcv Peu d’influence sur l’ensemble de la courbe

ϕp Influence très importante sur le niveau de contrainte à la rupture

E Influence relativement faible sur l’ensemble de la courbe

ν Pas d’influence

ε0
e

ε0
c
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en déformations axiales et volumiques. Ceci suggère que leur valeur sera plus facilement identifia-
ble sur des essais triaxiaux de compression. Les variations observées sur les figures doivent aussi
être appréciées en tenant compte du niveau de déformation atteint dans les simulations. Dans les
cas présentés, les déformations axiales maximales sont voisines de 10 %, ce qui a pour effet
d’« écraser » les réponses aux faibles déformations sur les figures. C’est une différence importante
par rapport aux réponses fournies par la loi de Nova (Mestat et Arafati, 2000). À titre d’exemple,
pour un même essai et un même chemin de contraintes, la figure 10 compare les réponses des deux
modèles : la loi de Vermeer présente une réponse beaucoup plus « souple » et régulière que la loi
de Nova.

Principe d'ajustement des paramètres pour la loi de Vermeer

Les premières applications ont montré que la méthodologie de détermination des valeurs des para-
mètres proposée conduisait à des simulations satisfaisantes des courbes (ε1, σ1 – σ3). Toutefois, il
a fallu dans certains cas corriger le module d’Young tangent au déchargement (pente A1) afin
d’assurer des valeurs positives aux paramètres  et . Par ailleurs, la position de l’état caracté-
ristique est souvent assez mal décrite (Mestat, 1990). Les ajustements proposés concernent donc en
priorité l’état caractéristique.

L’étude de sensibilité précédente et l’analyse des équations du modèle (cf. tableau I) ont démontré
que les paramètres ϕp et  avaient une influence sur l’ensemble des courbes de comportement de
l’essai triaxial en compression drainé.

Une augmentation de l'angle de frottement au pic ϕp provoque :

➢  des déformations axiales plus faibles ;
➢  une augmentation des déformations volumiques et notamment de l'extremum de déformation
volumique (ou état caractéristique) et une translation de l'asymptote vers les faibles déformations
axiales dans le diagramme (ε1, εv). Le phénomène inverse est observé pour une diminution de
l’angle de frottement au pic.

On peut donc généralement, par une légère variation de cet angle (0,5 ou 1 degré), améliorer d'une
façon étonnante les simulations théoriques.

TABLEAU VII

Influence des paramètres de la loi de Vermeer sur la courbe (ε1, εv)

Paramètres Types d’influence pour une variation de ± 25 %

Légère influence sur la position de l’état caractéristique : une augmentation de  réduit les 

déformations plastiques et entraîne une translation de l’asymptote vers les grandes défor-

mations axiales

β, 

Influence notable sur la position de l’état caractéristique : une augmentation de β (ou de ) 

conduit à une augmentation de la contractance et du maximum de déformation volumique 

et à une translation de l’asymptote vers les grandes déformations axiales

ϕcv
Influence importante sur la position de l’état caractéristique et sur la valeur de l’asymptote 

aux grandes déformations

ϕp
Influence très importante sur la valeur de l’asymptote aux grandes déformations, mais peu 

d’influence sur la position de l’état caractéristique

E, ν

Influence notable sur la position de l’état caractéristique : une augmentation de E (ou de ν) 

conduit à une diminution de la contractance, un accroissement des déformations volumi-

ques, de la déformation volumique maximale et à une translation de l’asymptote vers les 

faibles déformations axiales

ε0
c
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c

ε0
e
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e
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e
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Fig. 3 - Influence d'une variation de  sur les courbes (ε1, q/p) et (ε1, εv).ε0
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Fig. 5 - Influence d'une variation de β sur les courbes (ε1, q/p) et (ε1, εv).
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Fig. 6 - Influence d'une variation de ϕcv sur les courbes (ε1, q/p) et (ε1, εv).
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Fig. 7 - Influence d'une variation de ϕp sur les courbes (ε1, q/p) et (ε1, εv).
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Fig. 8 - Influence d'une variation de E sur les courbes (ε1, q/p) et (ε1, εv).
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Pour sa part, le paramètre  n’a pas d’effet sur la rupture (niveau de contrainte et pente de dila-
tance). En revanche, il a une incidence sur le taux de dilatance à l’état caractéristique et sur la
position de l’asymptote représentant la dilatance à l’approche de la rupture. Lorsque le paramètre

 est augmenté, l'extremum de déformation volumique augmente et l'asymptote se décale vers les
faibles déformations axiales, et inversement pour une diminution. Cet effet est notable mais bien
moins important que celui entraîné par une variation de l'angle de frottement au pic. Il faut parfois
multiplier par 10 la valeur de  pour améliorer de façon sensible des simulations.

En toute rigueur, il semble délicat de procéder à un calage en modifiant l’angle de frottement au
pic, mais c’est le seul paramètre de la loi de Vermeer qui permet, moyennant une petite variation,
d’améliorer de manière radicale un ensemble de simulations. Le principe d'ajustement des courbes
théoriques est donc fondé sur une modification « légère » de cet angle. Avec un effet moindre, on
peut également modifier le paramètre . Le choix entre les deux paramètres tient à l’importance
des écarts que l’on veut réduire. Si les écarts sont faibles au départ, il est préférable d’ajuster le
paramètre . En revanche, pour resserrer des écarts plus importants, il convient de modifier
l’angle de frottement au pic, puis éventuellement d’affiner la concordance en agissant sur . Cette
manière de procéder est simple et ne nécessite généralement que quelques allers et retours pour
atteindre une simulation satisfaisante.
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Fig. 9 - Influence d'une variation de ν sur les courbes (ε1, q/p) et (ε1, εv).
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Fig. 10 - Comparaison entre les simulations avec les lois de Nova et de Vermeer.
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Enfin, il est à noter que cette procédure ne permet pas toujours d’identifier convenablement les
paramètres  et β, leur incidence sur la modélisation de l’essai triaxial de compression étant sou-
vent faible. Il est alors recommandé d’analyser en complément des essais de compression isotrope,
si ceux-ci sont disponibles.

Correspondances entre les paramètres mécaniques des modèles
Comme ce sont toujours les mêmes tangentes expérimentales qui interviennent dans cette métho-
dologie, il est possible de relier directement les paramètres de différents modèles entre eux. Par
exemple, connaissant les valeurs des paramètres de la loi de Nova, on peut déduire les valeurs des
paramètres de la loi de Vermeer, et ceci d'autant plus facilement que cette dernière comporte moins
de paramètres. Ces correspondances proviennent de trois types d'identification : celle concernant
les paramètres élastiques, celle liée aux paramètres de la rupture et celle décrivant le phénomène de
dilatance. Le tableau VIII présente les correspondances établies entre les lois de Vermeer, de Nova
(version 1982) et de Mohr-Coulomb.

avec  ;  représente le module de déformation tangent à l’état ini-

tial.

Dans le cas du modèle élastoplastique parfait de Mohr-Coulomb, il n’est pas possible d’établir de
correspondance pour le paramètre  puisqu’il n’y a pas d’écrouissage.

Même si les tangentes initiales, extrema et autres asymptotes sont identiques, les simulations des
courbes triaxiales sont évidemment différentes selon chaque modèle. Les courbures intermédiaires
ne sont pas les mêmes (fig. 10). Aussi ces correspondances constituent-elles seulement une première
approche lorsque les valeurs des paramètres de plusieurs modèles sont à estimer sur une même série
d’essais. Dans plusieurs applications, on a obtenu de cette manière des valeurs satisfaisantes pour la
loi de Vermeer. Si cela est nécessaire, la procédure d'ajustement est ensuite appliquée.

Exemple d’application : étude du sable de Labenne
Dans le cadre général des recherches du LCPC sur le comportement des fondations, une station
d'essais a été installée sur le site de Labenne, près de Bayonne. Une série d'essais de chargement y a
été réalisée sur des fondations superficielles dans le but d'analyser l'influence des conditions d'exécu-
tion sur les valeurs de portance et de tassement. Le sol de Labenne est constitué par un sable de dune
(Canépa et Depresles, 1990). Ces essais ont fait l’objet de modélisations numériques qui ont néces-
sité la détermination des valeurs des paramètres des modèles. Pour cela, des échantillons de sable ont
été prélevés et envoyés au Laboratoire régional des Ponts et Chaussées de Rouen afin de réaliser une

TABLEAU VIII

Correspondances entre les paramètres des lois de comportement

Nova → Vermeer Vermeer → Nova Mohr-Coulomb → Vermeer Vermeer-> Mohr-Coulomb
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série d'essais triaxiaux axisymétriques. Onze essais de compression ont été effectués pour trois den-
sités différentes : dix essais à pression de confinement constante et un essai de compression isotrope.

Pour l’application de la méthodologie proposée, seuls les échantillons moyennement denses
(γ = 16,6 kN/m3) et les échantillons denses (γ = 17,3 kN/m3) ont été considérés. Le tableau IX indi-
que les pressions de confinement appliquées et la numérotation des essais utilisée dans cet article.
Pour chaque essai, les valeurs des paramètres de la loi de Vermeer ont été estimées.

D'une manière générale, les valeurs retenues dès la première estimation conduisent à des simula-
tions théoriques qui concordent bien avec les résultats expérimentaux, en particulier au début et à
la fin des courbes de comportement (ε1, σ1 – σ3). Pour les courbes volumiques (ε1, εv), une concor-
dance satisfaisante est également observée au début de l'essai jusqu'à l'état caractéristique. Au delà
de cet état, une surestimation des déformations apparaît. La simulation de l'état caractéristique est
d'autant plus remarquable que les paramètres ont été déterminés aux voisinages de l'état initial et de
la rupture. Cette bonne description s'explique par la prise en compte d'une forme approchée de la
loi « contrainte-dilatance » de Rowe (1971) dans les équations proposées par Vermeer.

Sable moyennement dense

Fig. 11 - Comparaison des simulations théoriques ajustées avec les résultats expérimentaux pour l’essai à σ3 = 50 kPa.

Fig. 12 - Comparaison des simulations théoriques ajustées avec les résultats expérimentaux pour l’essai à σ3 = 100 kPa.
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Aucun ajustement n’a donc été nécessaire pour décrire de manière satisfaisante les essais 3, 4, 6 et
7. En revanche, pour les trois autres essais, de légers ajustements ont semblé nécessaires : le para-
mètre  a été augmenté de 0,001 pour les essais 1 et 5, tandis qu'il était diminué de 0,005 pour
l'essai 2. Les simulations ainsi ajustées deviennent excellentes. Le tableau IX regroupe les valeurs
des paramètres finalement adoptées pour chaque essai.

Pour le sable moyennement dense et le sable dense, l’étape suivante consiste à considérer la valeur
moyenne de chaque paramètre et à simuler l’ensemble des essais relatifs à une densité donnée
(essais 1 à 4 ou essais 5 à 7). 

❶  Les valeurs moyennes pour le sable moyennement dense conduisent à des résultats relative-
ment satisfaisants pour les essais 1 à 4. La valeur de  a tout de même été faiblement diminuée (de
0,001) pour mieux décrire l’état caractéristique (fig. 11 à 14).
❷  Pour le sable dense (essais 5 à 7), on obtient également de bonnes simulations avec les valeurs
de paramètres issues de la première estimation. Néanmoins, la valeur de  a été légèrement aug-
mentée (de 0,0003) ainsi que l’angle de frottement au pic (de 0,3 degré) afin de mieux représenter
l’état caractéristique et l’allure générale des courbes triaxiales. Le jeu de paramètres moyens ainsi
« ajustés » permet d’obtenir des résultats très satisfaisants (tableau X, fig. 15 à 17). 

Les figures 11 à 17 mettent aussi en évidence la capacité de la loi de Vermeer à décrire les courbes
expérimentales des essais triaxiaux de compression drainés.  
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Fig. 13 - Comparaison des simulations théoriques ajustées avec les résultats expérimentaux pour l’essai à σ3 = 200 kPa.

Fig. 14 - Comparaison des simulations théoriques ajustées avec les résultats expérimentaux pour l’essai à σ3 = 300 kPa.
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Synthèse des résultats obtenus sur des sables d’origine diverse
La méthodologie de détermination des paramètres et la procédure d’ajustement proposées ont con-
duit à d'excellents résultats pour quatre types de sable : sables d'Hostun et de Reid Bedford (Yous-
sef, 1991), sable de Labenne (Mestat, 1992) et sable de Fontainebleau (Abdallah, 1997). Le
tableau XI regroupe les valeurs obtenues.

L’analyse de ces valeurs et des valeurs estimées par Vermeer dans ses publications fournit quel-
ques indications sur l’ordre de grandeur de ces paramètres :

➢  l’angle de frottement au pic ϕp semble compris entre 35 et 45 degrés* ;
➢  l’angle ϕcv varie entre 20 et 30 degrés environ ;
➢   et  sont de l’ordre de 10–3 ;
➢  β est inférieur à 0,5.

TABLEAU IX

Valeurs des paramètres de la loi de Vermeer pour chaque essai (sable de Labenne)

Sable moyennement dense Sable dense

Paramètre
Essai 1

σ3 = 50 kPa

Essai 2

σ3 = 100 kPa

Essai 3

σ3 = 200 kPa

Essai 4

σ3 = 300 kPa

Essai 5

σ3 = 50 kPa

Essai 6

σ3 = 100 kPa

Essai 7

σ3 = 150 kPa

0,00171 0,00603 0,0079 0,0104 0,00178 0,003 0,0043

0,00034 0,00935 0,00125 0,00138 0,00089 0,00051 0,0037

β 0,468 0,133 0,313 0,144 0,112 0,233 0,163

ϕp (degré) 40 35,9 34,5 35,3 43,1 39 37,5

ϕcv (degré) 32,4 28,2 26,6 27,5 31,5 26,9 26,5

E (MPa) 103,5 63,9 95,6 120,3 116,8 132 136

ν 0,17 0,28 0,27 0,38 0,38 0,32 0,3

TABLEAU X

Valeurs moyennes et ajustées des paramètres de la loi de Vermeer pour le sable moyennement dense 

et le sable dense (sable de Labenne)

Sable moyennement dense Sable dense

Paramètre Valeur moyenne Valeur ajustée Valeur moyenne Valeur ajustée

0,00653 0,00653 0,003 0,003

0,003 0,002 0,0018 0,0021

β 0,265 0,265 0,169 0,169

ϕp (degré) 36,5 36,5 39,9 40,2

ϕcv (degré) 28,7 28,7 28,3 28,3

E (MPa) 96 96 128 128

ν 0,28 0,28 0,33 0,33

*  Rappelons que certaines valeurs issues d’un ajustement sur les résultats expérimentaux peuvent être différentes des
valeurs de l’angle de frottement interne évaluées à partir du critère de Mohr-Coulomb.
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Sable dense

Fig. 15 - Comparaison des simulations théoriques ajustées avec les résultats expérimentaux pour l’essai à σ3 = 50 kPa.

Fig. 16 - Comparaison des simulations théoriques ajustées avec les résultats expérimentaux pour l’essai à σ3 = 100 kPa.

Fig. 17 - Comparaison des simulations théoriques ajustées avec les résultats expérimentaux pour l’essai à σ3 = 150 kPa.
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Cette méthodologie n’est qu’une approche parmi d’autres pour identifier des valeurs de paramè-
tres. Une autre approche pourrait avoir une incidence sur les valeurs des paramètres. Ainsi, des
écarts significatifs ont été relevés sur certains paramètres fournis par des procédures différentes.
Cette dispersion provient, d’une part, de la faible sensibilité de certains paramètres vis-à-vis de
l’essai triaxial de compression et, d’autre part, des effets antagonistes de certains paramètres qui
font qu’il n’y a pas unicité de solution. Fort heureusement, cette ambiguïté est levée lorsque deux
types d’essais à chemins de contraintes différents sont disponibles (par exemple : un essai triaxial
et un essai de compression isotrope, ou lorsqu’une phase de déchargement a été réalisée). Enfin,
pour les études d’ouvrage, il ne faut pas oublier de considérer les résultats des essais in situ qui
reflètent les caractéristiques du sol en place. Des recherches sont donc encore à envisager pour
perfectionner la détermination des paramètres de la loi de Vermeer et juger de ses performances
dans la modélisation par éléments finis des ouvrages de géotechnique.

Conclusions
Une méthodologie simple et de mise en œuvre rapide a été développée pour déterminer les paramè-
tres de la loi élastoplastique avec écrouissage de Vermeer, introduite dans le progiciel de calcul par
éléments finis CÉSAR-LCPC. Elle est fondée sur l'exploitation des essais triaxiaux de compression
drainés. Le rôle de chaque paramètre du modèle a été analysé. Des études de sensibilité ont permis
de compléter la méthodologie par un principe d'ajustement des simulations théoriques. Les bonnes
concordances observées entre les résultats théoriques et expérimentaux montrent le bien-fondé de
cette stratégie de détermination et confirment la capacité de la loi de Vermeer à décrire avec peu de
paramètres le comportement des sables sous sollicitations monotones. En revanche, ce modèle
n’est pas adapté au cas des chargements cycliques.

Des comparaisons entre les résultats des modèles de Mohr Coulomb, de Nova et de Vermeer ont
mis en évidence la pertinence de ce dernier. L’intérêt du modèle de Vermeer réside dans son très
faible nombre de paramètres par rapport aux autres modèles de plasticité avec écrouissage. Cet
avantage permet également d’envisager une détermination des valeurs des paramètres à partir de
résultats d’essai in situ (comme ceux de l’essai pressiométrique). Cette recherche particulière et la
modélisation d’ouvrages réels instrumentés restent à faire. Une nouvelle étape dans la validation et
l’utilisation de ce modèle de comportement sera alors franchie. 
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