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■ RÉSUMÉ
Cette étude vise à identifi er, au travers des données provenant des campagnes 
« Image qualité des routes nationales » (IQRN), les facteurs qui infl uent sur 
le comportement des chaussées. Cette identifi cation nécessite de mener 
conjointement analyse statistique (tests de signifi cativité) et « analyse métier ».
Deux méthodes statistiques ont été mises en œuvre : une méthode de régression 
non linéaire et une méthode fondée sur l’analyse des données de survie. 
Appliquées aux chaussées souples et fi ssurées du réseau routier national (RRN), 
ces méthodes ont permis de mettre en évidence le rôle de facteurs de structure, 
de trafi c et de climat sur l’évolution des chaussées. Ces méthodes ont aussi mis 
en évidence les imperfections des bases de données routières de type « gestion 
de réseau », ainsi que l’inadéquation de certaines méthodes statistiques à 
l’analyse des données étudiées.

Application of statistical methods for analyzing pavement 
evolution to the IQRN quality campaign
■ ABSTRACT
This study seeks to identify, through the use of data stemming from “National 
Road Quality Image” (French acronym: IQRN) campaigns, the set of factors 
that infl uence road pavement behavior. This identifi cation effort entails jointly 
conducting a statistical analysis (signifi cance testing) and a “road operator” 
analysis.
Two statistical methods were implemented, one featuring nonlinear regression 
techniques and the other based on a pavement survival data analysis. Applied 
to both fl exible and cracked pavements within France’s national road network, 
these methods have enabled highlighting the impact of structural, traffi c and 
climatic factors on pavement evolution. Such methods have also underscored the 
imperfections inherent in “network management” type road databases, along with 
the inappropriateness of certain statistical methods for analyzing collected study 
data.
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L’optimisation de la gestion de l’entretien routier sur les moyen et long termes suppose une bonne connaissance des 

lois qui gouvernent l’évolution des dégradations de chaussées. De très nombreux essais de laboratoire ont été réalisés 

depuis des décennies sur les matériaux de chaussées et ont permis d’établir des modèles de comportement très éla-

borés, notamment vis-à-vis des phénomènes de fatigue mécanique (fi ssuration, déformations permanentes, etc.). Ces 

modèles ont, eux-mêmes, été intégrés dans des méthodes de dimensionnement qui, une fois évaluées sur des sections 

tests, ont été largement appliquées sur le réseau routier national (RRN) français. Cette approche est-elle suffi sante 

pour prévoir le comportement des chaussées construites sur les différents réseaux routiers, qui subissent des sollici-

tations d’exploitation et d’environnement réelles extrêmement diverses ? Peut-on faire l’hypothèse que ces chaussées 

se comportent conformément aux modèles établis et se dispenser ainsi d’un lourd et diffi cile travail d’observation et 

d’analyse de leur comportement réel ?

Les auteurs, comme bien d’autres spécialistes dans le monde, répondent à cette question par la négative. Les modèles 

élaborés à partir d’expérimentations réalisées dans les conditions très maîtrisées d’un laboratoire, même s’ils sont 

validés par le suivi d’un nombre, forcément restreint, de sections tests, ne peuvent suffi re à décrire avec fi abilité le 

comportement réel de toutes les sections d’un réseau, considérées individuellement. Des études ont montré que de 

très nombreuses variables affectaient ce comportement, qui ne pouvaient pas toutes être considérées dans les essais 

de laboratoire et donc dans les modèles qui en résultent. Par ailleurs, les méthodes de dimensionnement ne visent pas 

à maîtriser l’évolution des dégradations durant toute la vie de la chaussée, mais plutôt à ne pas dépasser certains 

seuils critiques. Ainsi, dans la méthode française, on cherche à maîtriser « ... la probabilité pour qu’apparaissent, 

au cours d’une certaine période, des désordres qui impliqueraient des travaux de renforcement assimilables à une 

reconstruction de la chaussée... ».

Les travaux de modélisation de l’évolution des dégradations de chaussées par analyse statistique d’observations 

systématiques faites en site (c’est-à-dire de bases de données) se heurtent à des diffi cultés : complexité de l’évolution 

réelle des chaussées, rareté de certaines informations portant justement sur les variables explicatives de cette évolu-

tion, incertitudes diverses qui affectent les observations de site ou leur localisation, plage de variation restreinte de 

certaines variables, etc. L’étude des bases de données relève d’une observation du monde réel avec tout ce que celui-

ci comporte de complexe et d’imparfait. La puissance des outils statistiques ne permet pas toujours de surmonter 

complètement ces diffi cultés. Pour autant, la mise en œuvre de cette approche est incontournable : elle seule apporte 

un « retour d’informations » indispensable sur le comportement des chaussées, sous une forme exploitable pour la 

gestion prévisionnelle de l’entretien (les lois d’évolution des dégradations). À supposer que les chaussées d’un type 

donné, d’un dimensionnement donné, se comportent en moyenne comme le prévoient les méthodes de dimensionne-

ment, une section particulière de ce type ne suit jamais exactement cette moyenne, qui reste virtuelle. Et la gestion 

rationnelle de l’entretien routier vise justement à adapter chaque technique, chaque séquence d’entretien, à la section 

précise à laquelle elle s’applique. Comme le souligne cet article, les deux démarches (connaissances mécaniques 

issues d’essais de laboratoire, étude statistique de bases de données) ne sont pas à opposer, tout au contraire : elles 

sont complémentaires et doivent être étroitement associées, les connaissances mécaniques devant guider l’analyse 

statistique. Celle-ci peut pointer des variables qui ne sont pas encore prises en compte dans les méthodes de dimen-

sionnement et qui conditionnent néanmoins leur comportement.

L’étude du comportement réel des chaussées par l’analyse statistique des bases de données routières est une voie 

de progrès de la gestion des routes. Elle doit rester prudente et modeste, en raison des diffi cultés auxquelles elle se 

confronte. Elle doit constamment rechercher des améliorations, notamment dans la défi nition des méthodes et dans 

la qualité des bases de données (des moyens de recueil et de la gestion des données). Elle constitue un retour d’expé-

rience indispensable.
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INTRODUCTION

L’optimisation de la gestion de l’entretien routier, sur les moyen et long termes, nécessite de connaître 

les facteurs susceptibles d’infl uer sur le comportement des chaussées. Ces facteurs, qualifi és de 

« variables explicatives » lors de l’étape de modélisation, peuvent être liés à la structure des chaus-

sées (épaisseurs des différentes couches), au trafi c (de dimensionnement ou réel) ou encore aux 

conditions climatiques (hauteur des précipitations, températures extrêmes, indice de gel) [1]. Afi n 

d’identifi er plus sûrement ces facteurs, des modèles statistiques sont mis en place : issus d’études 

antérieures [2-5], ils permettent d’exprimer les dégradations observées sur des sections de route 

en fonction de l’âge de celles-ci et d’une ou de plusieurs variables explicatives. Cette étape de 

modélisation du comportement des chaussées repose donc sur l’observation de l’évolution d’un 

échantillon représentatif de sections et sur l’analyse statistique de ces observations. 

Dans le cas présent, l’échantillon représentatif est issu de la base de données IQRN. Cette base, de 

type « gestion de réseau », rassemble les données de dégradation de surface relevées depuis 1993 

sur les routes nationales françaises, ainsi que certaines de leurs caractéristiques, essentiellement en 

termes de structure et de trafi c. Pour enrichir les modèles statistiques ultérieurs, des informations 

complémentaires, relatives aux conditions climatiques et recueillies auprès de Météo-France, ont 

été ajoutées à l’échantillon analysé.

Dans la présente étude, des méthodes d’analyse statistique sont appliquées à une sous-population 

de la base de données IQRN. Sous réserve de leur adéquation aux données, elles doivent permettre 

de mettre en évidence le rôle de plusieurs facteurs dans l’évolution de la fi ssuration des chaussées 

bitumineuses épaisses et souples. En dernier lieu, une « expertise métier » est menée dans le but de 

corroborer les résultats issus de l’analyse statistique. Cette expertise consiste en l’interprétation des 

résultats statistiques en fonction des connaissances disponibles dans le domaine routier. 

MÉTHODES STATISTIQUES

■ Présentation

Quatre méthodes de modélisation de l’évolution des chaussées ont été étudiées.

La méthode directe [6] : il s’agit d’une méthode de régression non linéaire multiple.

La méthode indirecte (MI) [7] : elle associe un procédé d’ajustement itératif et une régression 

multilinéaire.

La méthode des classes [8] : elle s’appuie sur la théorie des chaînes de Markov et de leurs pro-

priétés de stationnarité.

La méthode d’analyse des données de survie (MADS) [2, 9] : elle s’appuie sur les propriétés 

paramétriques des modèles pour données de survie.

Ces méthodes supposent que les équations mathématiques régissant les lois d’évolution sont pré-

défi nies. Dans le cas des trois premières méthodes, ces équations sont habituellement de type sig-

moïde tandis que, dans le cas de la MADS, la loi d’évolution est ordinairement une loi de Weibull. 

Dans la présente étude, seules les méthodes MI et MADS ont été mises en œuvre. Leur principe 

est brièvement rappelé ci-dessous (on trouvera une description complète de cette méthodologie 

statistique dans [3]). 

■ Méthode indirecte (MI)

› Modélisation
Cette méthode consiste à modéliser un indicateur de dégradation, tout en respectant une hypothèse 

de régularité qui veut qu’une dégradation tende naturellement à croître au cours du temps. Il existe 

de nombreuses fonctions respectant cette hypothèse de régularité, parmi lesquelles les fonctions 
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linéaire, exponentielle, sigmoïde... C’est cette dernière qui est retenue ici pour le modèle d’évolu-

tion ; celui-ci s’écrit :

  (1)

où k
i
(t) est un coeffi cient d’évolution, croissant de 0 à 1, associé à la ie section, t

mi 
est l’âge 

auquel le coeffi cient d’évolution atteint la valeur 0,5 et u
i
 est un paramètre de forme de la courbe 

d’évolution.

Cette formulation permet de déterminer les coeffi cients t
mi

 et u
i
, propres à la ie section, grâce à une 

régression linéaire portant sur l’ensemble des observations faites sur cette section, et effectuée sous 

forme itérative. Deux ou trois itérations suffi sent à obtenir une précision suffi sante pour les valeurs 

des paramètres. On cherche ensuite à exprimer ces valeurs en fonction de n variables caractéristi-

ques des sections de routes, au travers des expressions suivantes :

  (2)

  (3)

où V
1
, V

2
, ..., V

n
 sont les variables explicatives anticipées par l’« expertise métier ». Une trans-

formation logarithmique des équations (2) et (3) permet de déterminer les coeffi cients α
j
 et β

j
 par 

ajustement de régressions linéaires univariées (cas où n = 1) ou multiples (cas où n > 1).

› Mise en œuvre
Pour chacun des deux paramètres u et t

m
, trois types de régressions linéaires sont effectués.

Le premier consiste en une régression linéaire univariée : les variables explicatives sont intégrées 

à tour de rôle dans le modèle de régression. Un test de signifi cativité permet de déterminer si un 

coeffi cient α
i
 est signifi cativement différent de 0, c’est-à-dire si la variable explicative V

i
 associée 

à ce coeffi cient a un impact signifi catif sur le paramètre étudié. Plus précisément, ce qui est calculé 

est la probabilité critique P, qui mesure l’accord entre l’hypothèse testée (H
0
 : α

i
 = 0) et le résultat 

obtenu : plus cette probabilité critique est proche de 0, plus forte est la contradiction entre H
0
 et le 

résultat obtenu. On considère habituellement que l’hypothèse nulle H
0
 doit être rejetée dès que P est 

inférieure à 5 %. La régression univariée, qui permet d’éviter la redondance d’information fournie 

par plusieurs variables explicatives (phénomène statistique de multicolinéarité), présente cepen-

dant l’inconvénient de ne tenir compte que d’une partie de l’information disponible et conduit, par 

conséquent, à des résultats peu satisfaisants. 

Le deuxième type de régression linéaire consiste en une régression par triplets : les variables 

explicatives sont intégrées trois par trois dans le modèle de régression. Le triplet de variables expli-

catives retenu comme étant le plus explicatif l’est au terme d’une procédure de comparaison des 

vraisemblances de chacun des modèles. Cette procédure, qui intègre davantage d’information que la 

régression univariée, suppose que les variables explicatives ne soient pas fortement corrélées : pour 

éviter ce phénomène de multicolinéarité, le choix de ne retenir conjointement que trois variables 

explicatives semble constituer un compromis raisonnable. 

Le troisième type de régression linéaire consiste en une régression multiple : toutes les variables 

explicatives non corrélées sont introduites dans le modèle, puis une méthode de sélection descen-

dante est utilisée ; à chaque étape, la ou les variables explicatives non signifi catives sont retirées du 

modèle, et un test statistique permet de déterminer si le retrait de cette variable ou de ces variables 

améliore la qualité de l’ajustement.
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Pour chacun de ces types de régression, le coeffi cient de détermination – qui quantifi e le pourcen-

tage de variabilité des paramètres expliqué par le modèle – est calculé. Outre son caractère informa-

tif, ce coeffi cient permet également de comparer entre eux les différents modèles de régression.

Enfi n, la bonne adéquation du modèle de régression linéaire aux données est jugée dans tous les cas 

par l’étude de l’hypothèse de normalité des résidus. 

■ Méthode d’analyse des données de survie (MADS)

› Modélisation
Cette méthode suppose que l’âge Tτ auquel une section atteint un seuil de dégradation τ est une 

variable aléatoire suivant une loi de vecteur de paramètres θ, de fonction de répartition F(t) et de 

densité de probabilité f(t) = F′(t). L’objectif de cette méthode est d’identifi er la loi de probabilité de 

Tτ par l’estimation de ses paramètres. À cette fi n, on calcule la probabilité de la  réalisation de ce qui 

est observé sur chaque section : c’est la fonction de vraisemblance (FV), qui est notée L(θ).

Une particularité de l’analyse des données de survie est la présence d’une variable aléatoire appelée 

censure et traduisant la possible non-observation du phénomène étudié – en l’occurrence l’atteinte 

du seuil τ. Il existe trois types de censure :

– une censure à gauche, si lors de la première observation faite sur la ie section au temps t
i1
, le seuil 

de dégradation τ est déjà atteint : dans ce cas, la contribution de cette section à la FV est F(t
i1
) ;

– une censure à droite, si lors de la dernière observation faite sur la ie section au temps t
i2
, le seuil de 

dégradation τ n’a pas été atteint : dans ce cas, la contribution à la FV est 1 – F(t
i2
) ;

– une censure par intervalle, si l’atteinte du seuil τ par la ie section a eu lieu entre deux observa-

tions successives, réalisées aux temps t
i1
 et t

i2
 (t

i1
 < t

i2
) : dans ce cas, la contribution à la FV est 

F(t
i2
) – F(t

i1
).

En l’absence de censure, la contribution d’une section à la FV est f(t). L’expression fi nale de la FV 

est alors le produit, pour chaque section, des quantités précédentes : si l’on dispose de N sections, 

on obtient fi nalement :

  (4)

où les fonctions δ
ji
, pour j = 1,... 4, sont les fonctions indicatrices des types d’événements observés, 

c’est-à-dire qu’elles valent 1 respectivement en cas de censure à gauche, censure à droite, censure 

par intervalle et absence de censure, et 0 sinon.

Une fois la FV obtenue, on cherche alors à calculer l’estimateur  qui est la valeur de θ pour 

laquelle cette FV est maximale. Cette analyse est répétée pour les seuils d’évolution τ compris entre 

0 % et 100 % par pas de 5 %.

L’hypothèse couramment faite est que la variable aléatoire Tτ suit une loi de Weibull [10] : cette 

loi, qui dépend de deux paramètres, est très souple et permet de supposer que la dégradation d’une 

section ne peut que s’accentuer dans le temps. Si l’on note respectivement γ et µ les paramètres de 

forme et d’échelle de la loi de Weibull, X le vecteur des variables explicatives et β le vecteur des 

coeffi cients associés aux variables explicatives, alors :

  (5)

et

  (6)

La fonction de survie, qui est défi nie comme la probabilité de rester en deçà d’un seuil de dégrada-

tion donné au cours du temps, est égale à 1 – F(t). Une illustration en est donnée par la fi gure 1.
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› Mise en œuvre 
L’algorithme de Newton-Raphson permet de déterminer les valeurs ,  et  qui maximisent la 

FV . Comme pour la méthode précédente, le choix des variables explicatives 

prises en compte dans l’analyse statistique repose sur « l’expertise métier ». La méthode de modé-

lisation permet alors de confi rmer ou d’infi rmer le caractère explicatif de ces variables. À cette fi n, 

un test de signifi cativité permet de déterminer si un coeffi cient β
i
 est signifi cativement différent de 

0, c’est-à-dire si la variable explicative X
i
 associée à ce coeffi cient a un impact signifi catif sur le 

paramètre étudié.

Là encore, trois types d’approches – en fonction du nombre de variables explicatives incluses dans 

le modèle – sont retenues :

– une approche univariée, destinée à identifi er individuellement les variables explicatives impli-

quées dans le processus de fi ssuration ;

– une approche par triplets de variables explicatives, qui permet d’enrichir l’information contenue 

dans le modèle tout en conservant une simplicité de calcul lors de la résolution du modèle ;

– une approche multiple, qui consiste à intégrer le maximum de variables explicatives non redon-

dantes, puis à ne conserver que celles effectivement signifi catives, au terme d’un processus par 

sélection descendante. 

La comparaison des différents modèles est effectuée grâce au critère d’Akaike [11], qui est défi ni 

par :

  (7)

où m est la dimension de θ. Le meilleur modèle est celui qui maximise ce critère.

Enfi n, une étude de l’ajustement des différents modèles aux données est réalisée, au travers de 

l’analyse des résidus martingales [12].

fi gure 1
Fonction de survie pour le 

seuil de 5 %, concernant 
l’étendue des fi ssurations 

relevées sur les routes 
nationales dans la zone du 

CETE Rhône-Alpes.
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LA CAMPAGNE IQRN

■ Généralités

L’opération « Image qualité des routes nationales » (IQRN), engagée par la Direction des routes 

en 1992, a pour objectif d’évaluer et d’assurer un suivi de l’état du réseau routier national : elle 

consiste à relever, par tiers chaque année, et suivant le mode opératoire M3 de la méthode LPC 

n° 38.2 [13], les dégradations de surface des quelques 30 000 km de routes nationales. Les moyens 

d’auscultation, qui associent des relevés visuels – pour les fi ssurations, les dégradations de revête-

ment et les réparations – et des mesures physiques par des appareils qualifi és – pour les déforma-

tions du profi l en travers et l’adhérence  sont exécutées et gérées par les centres d’études techniques 

de l’Équipement (CETE). Ils alimentent une base de données qui comprend aujourd’hui 150 000 

sections de routes de 200 m chacune, sections sur chacune desquelles on dispose d’au moins trois 

relevés consécutifs, conformément au tableau 1. Par ailleurs, et comme cela a été mentionné en 

introduction, la base comporte également des informations sur les structures de chaussées et le trafi c 

lourd (TMJA). 

Années de relevé

Relevé n° 1 Relevé n° 2 Relevé n° 3

1er tiers du RRN 1995 1998 2001

2e tiers du RRN 1996 1999 2002

3e tiers du RRN 1997 2000 2003

Il est important de noter que le mode M3 ne distingue que deux types de fi ssuration : la fi ssuration 

transversale (de retrait) et les « autres fi ssurations ». Chaque type est lui-même réparti en deux 

catégories : les fi ssurations signifi catives et les fi ssurations graves, selon leur stade d’évolution. 

L’indicateur sur lequel repose la présente étude concerne l’étendue totale (signifi cative et grave) 

des « autres fi ssurations ». Il est calculé pour chaque section et exprimé en pourcentage. Cet indi-

cateur représente le rapport de la longueur de chaussée fi ssurée sur la longueur totale de la section, 

et regroupe :

– la fi ssuration de fatigue, due à la répétition des efforts de traction par fl exion au passage des char-

ges, et apparaissant dans les bandes de roulement ;

– la fi ssuration de la couche de roulement liée à une mauvaise exécution des joints de construction, 

au vieillissement du liant ou à une sensibilité du bitume aux contraintes thermiques.

On conçoit que ces deux types de fi ssuration apparaissent et se propagent plus ou moins rapide-

ment selon différents facteurs, tout d’abord les caractéristiques de conception des chaussées (struc-

ture, dimensionnement, caractéristiques du bitume), ensuite le niveau de contraintes induit dans la 

chaussée au passage des poids lourds de charge utile supérieure à cinq tonnes (trafi c), et enfi n les 

conditions climatiques en ce qui concerne la fi ssuration thermique. Suite à cette « expertise métier » 

préalable, quatorze variables potentiellement explicatives – modélisant les facteurs ont été retenues 

pour l’analyse statistique (tableau 2). 

■ Échantillonnage

L’étude, qui s’intéresse aux chaussées à assises bitumineuses et non traitées, a nécessité la constitu-

tion de différents échantillons, en fonction :

– de leur origine géographique ;

– de l’entretien qu’elles avaient – ou non – reçu ;

– des variables explicatives potentielles effectivement disponibles ;

– du nombre de relevés successifs disponibles sur chaque section.

tableau 1
Dates des relevés effectués 

par tiers sur le réseau 
routier national.
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› Classifi cation suivant l’origine géographique
Étant donné la taille de la base IQRN, seules les données issues des CETE Rhône-Alpes et Sud-

Ouest ont été retenues pour l’analyse statistique des sections sans entretien : outre le fait que les don-

nées issues de ces deux CETE étaient en nombre suffi sant pour assurer la pertinence de l’analyse 

statistique ultérieure, elles présentaient des différences importantes en matière de caractéristiques cli-

matiques. Les données issues de ces deux CETE ont été étudiées séparément, puis conjointement. 

› Classifi cation suivant l’entretien reçu
Une première analyse statistique a porté sur les sections du CETE Rhône-Alpes, en différenciant 

les sections qui avaient reçu un entretien de celles qui n’en avaient pas reçu : l’objectif était alors 

de déterminer si l’entretien modifi ait l’évolution des chaussées. Dans l’affi rmative, une seconde 

analyse devait, quant à elle, porter sur les seules sections entretenues : il s’agissait alors de détermi-

ner quels étaient les facteurs pouvant éventuellement infl uer sur la fi ssuration des chaussées après 

entretien. À ce stade, deux facteurs spécifi ques aux chaussées entretenues ont été introduits dans le 

modèle statistique : le niveau de fi ssuration avant entretien et l’épaisseur de la nouvelle couche de 

roulement mise en place.

› Classifi cation suivant les variables explicatives effectivement renseignées 
Les champs de la base correspondant aux variables explicatives du tableau 2 ne sont pas toujours 

renseignés sur toutes les sections. Chaque étape de la modélisation a donc nécessité la constitution 

de deux types d’échantillons différents :

- un échantillon dit « complet » (C), incluant toutes les sections mais ne comprenant que les varia-

bles explicatives qui ne présentaient pas de valeurs manquantes ;

- un échantillon dit « réduit » (R), incluant uniquement les sections pour lesquelles toutes les varia-

bles explicatives étaient disponibles.

› Classifi cation suivant le nombre d’observations successives disponibles
Enfi n, l’application de la méthode indirecte nécessite de disposer d’au moins deux relevés de dégra-

dation non nuls par section. En conséquence, des échantillons de tailles différentes ont dû être spé-

cifi quement créés pour chacune des méthodes statistiques destinées à leur être appliquées. 

tableau 2
Variables explicatives 

potentielles retenues 
pour l’analyse statistique 

d’après une première 
« analyse métier ».

Catégorie Identifi ant Description*

Variables 
de structure

EpBB Épaisseur de la couche de roulement (avant entretien éventuel)

EpCBa Épaisseur de l’assise

EpCrb Épaisseur de la dernière couche de roulement mise en place

EpCNTa Épaisseur du sol support

EpEqa Épaisseur équivalente (calculée selon la méthode d’Odemark [14])

Epsta Déformation tangentielle (ALIZÉ-LCPC [1, 15])

Variables 
de trafi c

TfD Trafi c de dimensionnement (trafi c Poids Lourds journalier moyen 
de la voie la plus chargée)

TfR Trafi c réel (idem)

RT Rapport du trafi c de dimensionnement sur le trafi c réel

Variables 
de climat

Tmax Température maximale mensuelle, calculée sur les 3 ans

Tmin Température minimale mensuelle, calculée sur les 3 ans

Prec Hauteur des précipitations mensuelles, calculée sur les 3 ans

Gel Durée de gel mensuelle, calculée sur les 3 ans

Variable d’état Aft0b Fissuration (en %) au dernier relevé avant entretien

*  Les unités sont celles du Système international, sauf celles associées aux températures (degrés Celsius).
a  Variables présentant à l’origine des valeurs manquantes et exclues des échantillons complets.
b  Variables présentes uniquement dans les échantillons de sections entretenues.
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› Récapitulatif
Le tableau 3 récapitule les dix-huit échantillons différents qui ont dû être constitués pour l’analyse 

statistique. 

CETE Critère
MI MADS

C R C R

(a) Sud-Ouest Sans entretien 879 225 1 197 365

(b) Rhône-Alpes Sans entretien 569 434 701 526

(c) Rhône-Alpes Avec entretien 338 84 759 193

Total des sections sans entretien (a+b) 1 448 659 1 898 891

Total des sections de Rhône-Alpes (b+c) 907 518 1 460 719

ANALYSE STATISTIQUE

■ Statistiques descriptives

Les caractéristiques des données étaient similaires pour tous les échantillons. Parmi les sections non 

entretenues, les sections de chaussées en grave-bitume (72,7 % pour le Sud-Ouest et 93,1 % pour 

le Rhône-Alpes) étaient plus représentées que les chaussées en grave non traitée. Le type de trafi c 

prédominant était le type T1 (57,3 % pour le Sud-Ouest et 58,3 % pour le CETE Rhône-Alpes), qui 

correspond à un trafi c poids lourds journalier moyen compris entre 300 et 750 camions. Le suivi 

des dégradations pour le CETE Sud-Ouest (respectivement le CETE Rhône-Alpes) s’est traduit 

dans 26,5 % (resp. 0 %) des cas par trois relevés nuls, dans 26,5 % (resp. 70,3 %) des cas par deux 

relevés nuls, dans 28,7 % (resp. 20,7 %) des cas par un relevé nul et dans les 18,3 % (resp. 9,0 %) 

des cas restants par l’absence de relevé nul. Le tableau 4 donne les caractéristiques des valeurs des 

trois relevés en termes de distribution.

Min 1Q* 2Q* Moy. 3Q* Max

1er relevé
Sud-Ouest 0,0 0,0 0,0 4,7 0,0 100,0

Rhône-Alpes 0,0 0,0 0,0 2,8 0,0 95,0

2e relevé
Sud-Ouest 0,0 0,0 0,0 19,7 27,0 100,0

Rhône-Alpes 0,0 0,0 0,0 8,1 4,0 100,0

3e relevé
Sud-Ouest 0,0 0,0 34,0 43,0 93,0 100,0

Rhône-Alpes 1,0 20,0 69,0 60,8 100,0 100,0

*  1Q = 1er quartile, 2Q = 2e quartile (médiane), 3Q = 3e quartile.

■ Analyse en composantes principales

Des analyses en composantes principales (ACP) ont été effectuées pour chaque échantillon, mais 

elles n’ont pas permis d’en tirer des informations relatives à la structure des données : en effet, 

pour s’assurer de l’explication de 90 % de la variance1 – critère habituellement retenu dans le cadre 

d’une ACP – il fallait retenir au moins six axes. De plus, les valeurs propres associées aux variables 

explicatives étaient faibles, ce qui empêchait d’attribuer à chacun de ces axes une signifi cation 

claire. Enfi n, la représentation graphique des individus (correspondant aux sections de route) sui-

vant ces nouveaux axes a montré un rapprochement des points sous forme de nuage dense, rendant 

impossible toute interprétation de l’emplacement des individus en fonction des axes de l’ACP.

1 Il s’agit d’une proportion cumulée.

tableau 3
Récapitulatif des 

échantillons complets (C) 
et réduits (R) en termes 

d’effectifs.

tableau 4
Minimum, maximum, 

moyenne et quartiles des 
valeurs de l’indicateur de 
fi ssuration totale (en %).
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■ Application de la méthode indirecte

Cette méthode n’a pas permis de mettre en évidence des variables explicatives signifi catives : dans 

tous les cas, le coeffi cient de corrélation R2 n’excédait jamais 0,3. De plus, l’adéquation de cette 

méthode aux jeux de données étudiés s’est révélée mauvaise, quel que soit le type de régression 

utilisée pour la mise en œuvre (cf. supra). Une étude graphique des résidus issus de la régression 

linéaire de log(t
m
) (3) montre que la normalité des résidus n’était pas assurée (fi gure 2) : en effet, 

leurs quantiles ne coïncidaient pas avec ceux d’une distribution normale. Cette étude graphique a 

été complétée par un test statistique de normalité de ces résidus, qui a conduit au rejet de l’hypo-

thèse nulle de normalité dans tous les cas. Aussi les résultats issus de la méthode indirecte ne peu-

vent-ils être considérés comme valides ; pour cette raison, ils ne sont pas rapportés ici.

Une explication, au moins partielle, de cette inadéquation peut être avancée. La première étape 

de cette méthode procède « par différence entre les observations successives faites sur une même 

section ». Ses résultats sont donc très sensibles aux défauts de référentiel. Si le référentiel terrain 

(les PR) a été modifi é par suite de travaux (redressement de virage, révision de bornage) sans que 

cela soit reporté dans la base de données, deux observations affectées à la même section dans la 

base pourront en réalité provenir de deux sections distinctes. L’examen de la base existante montre 

que ce phénomène ne peut pas être considéré comme absolument marginal. En outre, les erreurs de 

recueil affectant deux relevés successifs sont amplifi ées par l’opération de soustraction.

Quantiles de loi normale

Résidus studentisés

3 2 1 0 1 2 3

4

2

0

2

4

■ Application de la méthode d’analyse des données de survie

Contrairement à la méthode indirecte, la MADS a conduit à des modèles présentant une bonne 

adéquation aux données routières étudiées. Une analyse graphique des résidus a permis de constater 

que le modèle de Weibull ajustait convenablement les données (fi gure 3) : ainsi, les résidus de type 

« déviance » sont presque tous compris dans l’intervalle [– 3, 3), ce qui est parfaitement satisfai-

sant. De plus, cette étude sur les résidus a permis d’affi rmer que le modèle de Weibull était plus 

adapté aux données que d’autres modèles paramétriques (log-normal, exponentiel, etc.).

fi gure 2
Quantiles des résidus 

(cercles) issus de la 
régression de log(tm), en 

fonction des quantiles 
d’une loi normale (droite).
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› Analyse uni-variée
Dans cette approche, on teste les variables potentiellement explicatives une à une. Il apparaît que 

l’épaisseur des différentes couches infl uence signifi cativement le phénomène de fi ssuration. En 

particulier, l’épaisseur du revêtement (variable EpBB) est signifi cative pour l’échantillon du CETE 

Rhône-Alpes (pour tous les seuils de fi ssuration S), pour l’échantillon du Sud-Ouest (pour S < 60) 

et pour l’échantillon réduit des deux CETE réunis (pour tout S). Les autres variables d’épaisseur 

EpCB, EpCNT, EpEq et Epst sont, elles, apparues signifi catives pour les échantillons du CETE 

Rhône-Alpes et des deux CETE réunis (pour tout S) dans le cas des échantillons réduits2.

En ce qui concerne les variables climatiques, les températures maximale – pour Rhône-Alpes et les 

deux CETE réunis (pour tout S) – et minimale – pour les deux CETE réunis dans le cas de l’échan-

tillon réduit – agissent signifi cativement sur la fi ssuration. L’indice de gel est également apparu 

signifi catif pour les deux CETE étudiés séparément (quasiment pour tout S), et pour les deux CETE 

étudiés conjointement lorsque S était inférieur à 50 % (échantillon complet) ou supérieur à 70 % 

(échantillon réduit). Enfi n, la hauteur des précipitations est apparue signifi cative pour le CETE 

Rhône-Alpes et les deux CETE réunis (pour tout S), et pour le Sud-Ouest (pour tout S) dans le cas 

de l’échantillon complet.

Enfi n, le trafi c réel (variable TfR) est apparu signifi catif pour tous les échantillons complets (pour 

tout S), et pour le CETE Rhône-Alpes et les deux CETE réunis (pour tout S) dans le cas d’échan-

2 Rappelons que ces variables sont exclues des échantillons complets, car présentant de nombreuses valeurs manquantes 
pour ces échantillons.

fi gure 3
Résidus (cercles noirs) de 

type « déviance » à gauche 
et de type « dfbetas à 

droite ».
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tillons réduits. Quant au rapport des trafi cs (RT), il est apparu signifi catif pour le Sud-Ouest (pour 

tout S) dans le cas de l’échantillon complet, et pour le CETE Rhône-Alpes et les deux CETE réunis 

(pour S ≤ 60 %).

› Analyse par triplets
Cette analyse présente l’avantage, par rapport à la précédente, d’étudier l’effet conjoint de plusieurs 

variables explicatives. Cependant, la procédure de sélection du triplet de variables explicatives le 

plus explicatif ne tient pas compte de la possible multicolinéarité de ces variables. Aussi retrouve-

t-on souvent, parmi les variables explicatives les plus signifi catives, des variables fortement corré-

lées, comme la température minimale et l’indice de gel (coeffi cient de corrélation égal à 0,86).

Les variables d’épaisseur des couches (EpBB et EpCB) sont apparues signifi catives lors de l’étude 

des échantillons réduits des deux CETE (pour tout S), considérés séparément ou conjointement. 

Dans tous les cas, les températures maximale et/ou minimale, la hauteur des précipitations et l’in-

dice de gel sont également apparues signifi catives. Enfi n, deux variables caractérisant le trafi c sont 

apparues signifi catives dans certains cas : le rapport du trafi c réel au trafi c de dimensionnement 

(variable RT) sur l’échantillon complet pour le CETE Sud-Ouest (pour S ≥ 65), et le trafi c de 

dimensionnement (variable TfD) sur l’échantillon réduit pour les deux CETE étudiés conjointe-

ment (pour tout S).

› Analyse par sélection descendante
Le tableau 5 fournit les résultats de l’analyse statistique par sélection descendante, qui sont simi-

laires à ceux des analyses précédentes. Ainsi, l’épaisseur de la couche de roulement (EpBB), les 

températures maximale (Tmax) et minimale (Tmin), la hauteur des précipitations (Prec), l’indice 

de gel (Gel) et le trafi c réel (TfR) constituent des variables signifi catives. Les épaisseurs des autres 

couches (EpCB et EpCNT) et les autres variables liées au trafi c (TfD et RT) apparaissent comme 

signifi catives de façon plus ponctuelle.

Variable
Sud-Ouest Rhône-Alpes Réunis

C R C R C R

EpBB < 60 < 100 5 > 60 < 35 5-100

EpCB > 65 5-100 5-100

EpCNT > 45 > 60 > 60

Tmax < 90 5-100 > 5 > 40 > 10

Tmin > 35 < 75 < 100 5-100

Prec 5 5-100 5-100 5-100 5-100 5-100

Gel < 30 5-100 5-100 5-100 5-100

TfR > 80 > 40 > 60 5-100

TfD > 80 5-100

RT < 85 65-80

ÉTUDE DE L’EFFET D’UN ENTRETIEN

La première étape, consistant à comparer sections non entretenues et sections entretenues, s’est 

faite en introduisant, dans le modèle, une variable binaire indiquant, pour chaque section, la pré-

sence ou non d’une couche d’entretien. Un test de signifi cation portant sur cette variable, après 

ajustement sur les autres variables explicatives3, a permis de conclure que les sections suivaient des 

lois d’évolution signifi cativement différentes (P < 0,001) selon qu’elles avaient bénéfi cié ou non de 

travaux d’entretien. La fi gure 4 illustre cette différence en termes de fonction de survie : pour les 

3 C’est-à-dire dans le cadre d’un ajustement multiple.

tableau 5
Analyse par sélection 

descendante : seuils de 
fi ssuration pour lesquels 

les variables sont 
signifi catives, pour les 

échantillons complets (C) 
et réduits (R).
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seuils représentés (5 et 20 %) et pour un âge donné, une section entretenue présente une probabilité 

plus faible de ne pas avoir atteint ces seuils qu’une section non entretenue.

La seconde étape a consisté en une analyse de la signifi cativité des variables explicatives, pour 

l’échantillon comprenant toutes les sections entretenues du CETE Rhône-Alpes, ce CETE étant 

celui pour lequel on disposait de l’information nécessaire concernant les travaux d’entretien. Deux 

nouvelles variables explicatives ont été introduites dans le modèle multiple : l’épaisseur de la cou-

che d’entretien mise en place (variable EpCr) et la valeur du dernier relevé de dégradation réalisé 

avant entretien (variable Aft0).

Sur l’échantillon complet, une seule variable explicative est apparue signifi cativement liée au phé-

nomène de fi ssuration, et ce pour tous les seuils modélisés : il s’agit de la valeur du dernier relevé de 

dégradation avant travaux d’entretien (P < 0,001). Sur l’échantillon réduit, trois types de variables 

explicatives se sont révélées signifi catives :

– les épaisseurs des couches : il s’agit d’EpCr pour des seuils compris entre 30 et 45 % (P = 0,020), 

d’EpBB pour des seuils compris entre 20 et 60 % et d’EpCB pour des seuils compris entre 30 et 

55 % ;

– la hauteur des précipitations, pour des seuils compris entre 30 et 45 % (P = 0,030) ;

– la valeur du dernier relevé de dégradation avant entretien, pour des seuils compris entre 50 et 

80 % (P = 0,040).

fi gure 4
Fonctions de survie pour 

les sections sans entretien 
(courbe en trait fi n) et avec 
entretien (courbe en gras).
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■ Interprétation physico-mécanique

Il est indispensable de chercher à interpréter les résultats obtenus par les analyses statistiques, tels 

qu’ils sont présentés dans le paragraphe précédent, à la lumière des connaissances accumulées par 

les experts en comportement des chaussées, qu’elles proviennent d’essais de laboratoire, de suivi 

de sections particulières ou d’études de diagnostic de chaussées endommagées. Il est d’abord utile 

de noter que, dans l’ensemble, les signes de ces coeffi cients s’appliquant aux variables explicatives 

identifi ées – présentés dans le tableau 6 – sont assez stables sur l’ensemble des seuils de dégrada-

tion modélisés, pour un échantillon donné. Par contre, une variation de signe survient parfois lors 

du passage d’un échantillon à un autre.

Variable Signe 
du coeffi cient Impact*

Confi rmation 

par « l’expertise métier »

EpBB – accélération Non

EpCB + ralentissement Oui

Tmax + ralentissement Oui

Tmin + ralentissement Oui

Prec – accélération Oui

Gel + ralentissement Non

RT + ralentissement Oui

Aft0 – accélération Oui

*  Impact sur la vitesse d’évolution de la fi ssuration lorsque la valeur de la variable croît.

Certaines conclusions de l’analyse statistique apparaissent immédiatement comme conformes à 

« l’expertise métier ». Ainsi, plus l’assise est épaisse, mieux la chaussée résiste à la fi ssuration 

de fatigue. De même, une diminution des précipitations se traduit par une meilleure résistance de 

la chaussée à la fatigue : moins il pleut, moins la teneur en eau du sol ou de l’assise non traitée 

est élevée et plus ces couches sont « portantes ». On note encore que, pour un trafi c réel donné, 

plus fort était le trafi c pris en compte lors du dimensionnement, mieux la chaussée se comportait. 

Finalement, la fi ssuration d’une chaussée ayant fait l’objet d’un recouvrement réapparaît d’autant 

plus vite que cette fi ssuration était étendue juste avant les travaux.

L’infl uence des températures auxquelles est soumise la chaussée est également explicable par les 

connaissances du comportement des matériaux. Des températures moyennes annuelles élevées cor-

respondent à des climats où les périodes froides, durant lesquelles les couches bitumineuses sont 

durcies ou fragilisées par le froid, sont plus rares ou plus courtes. À défaut de connaître les caracté-

ristiques précises des bitumes employés sur chaque section, il est toutefois diffi cile d’aller plus loin 

dans cette interprétation.

À l’inverse, l’infl uence de l’épaisseur de la couche de roulement (variable EpBB) n’est a priori pas 

conforme à l’avis couramment formulé par les experts : d’après l’analyse statistique, plus la couche 

de roulement est épaisse, plus la fi ssuration initiale apparaît vite. Face à ce constat, il convient 

d’abord de rappeler que l’indicateur analysé combine la fi ssuration de fatigue (remontant des cou-

ches d’assise vers la surface) et la fi ssuration thermique (descendant de la surface vers le fond de 

la couche de roulement). Or, si la fi ssuration de fatigue remonte effectivement plus rapidement à 

travers les couches de roulement plus fi nes, il n’en est pas de même pour la fi ssuration thermique. 

Selon la part de chaque type de fi ssuration dans la résultante observée, le sens de variation constaté 

par l’analyse statistique peut ne pas être en contradiction avec l’avis d’expert. 

De même, d’après l’analyse statistique, plus élevé est l’indice de gel, moins rapide est l’évolution 

de cette fi ssuration, ce qui va à l’inverse de toutes les connaissances acquises. La remarque faite 

pour l’infl uence de l’épaisseur de la couche de roulement peut être invoquée ici aussi. En outre, on 

tableau 6
Rapprochement des 

analyses statistiques et de 
« l’expertise métier ».
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note que la plupart des données des différents échantillons proviennent de chaussées hors gel (cou-

che de forme appropriée pour empêcher le front de gel d’atteindre des sols gélifs), ce qui renforce 

le questionnement sur le sens à donner à la signifi cativité de l’effet de la variable gel.

La remarque concernant l’agrégation, au sein de l’indicateur analysé, de deux phénomènes phy-

siques distincts, infl uencés par des variables différentes, si elle permet d’avancer des explications 

pour les divergences entre certaines déductions de l’analyse statistique et « l’expertise métier », 

peut conduire à s’interroger sur la convergence de ces approches en ce qui concerne l’infl uence 

d’autres variables explicatives (épaisseur de l’assise, impact des précipitations, effet des températures 

de fonctionnement). Il y a là des enseignements à en tirer pour la constitution des bases de don-

nées. Sur un plan plus opérationnel, la règle qui est proposée, pour l’application de ces approches à 

l’identifi cation des lois d’évolution des dégradations, est la suivante :

– lorsque l’analyse statistique converge avec « l’expertise métier » pour déclarer une variable expli-

cative, celle-ci est retenue comme telle ;

– dans le cas contraire, la variable ne peut pas être retenue dans la formulation de la loi.

L’infl uence des variables potentiellement explicatives (d’après l’expertise), mais non retenues au 

terme de l’analyse statistique, ne pourra être prise en compte que globalement et au travers du 

concept de robustesse.

CONCLUSIONS ET PERSPECTIVES

L’étude d’une partie de la base de données IQRN a permis de mettre en évidence l’inadéquation de 

la MI à l’analyse des données de dégradations de chaussées. Toutefois, une gestion toujours plus 

précise du référentiel des bases de données pourrait, à terme, permettre de revoir cette conclusion. 

A contrario, la MADS s’est révélée satisfaisante du point de vue de la qualité de l’ajustement du 

modèle aux données de site.

Il a été montré que, sur les échantillons analysés, certaines variables expliquaient partiellement mais 

effectivement le développement de la fi ssuration, l’infl uence mise en évidence étant cohérente avec 

les connaissances acquises par d’autres approches d’experts en comportement des chaussées (épais-

seur de la couche de base, températures d’environnement, précipitations). D’autres variables semblent 

aussi infl uer sur le comportement de la chaussée, mais dans un sens inverse à celui auquel on pour-

rait s’attendre. Il en va ainsi de l’épaisseur du revêtement ou de l’indice de gel. Enfi n, l’impact de 

certaines variables est suffi samment marginal pour ne pas ressortir des résultats des analyses sta-

tistiques : épaisseur de la couche de fondation, épaisseur équivalente de la chaussée, déformations 

transversales en fond de couche telles qu’issues du dimensionnement, trafi c de dimensionnement. 

Ceci montre qu’il faut être prudent dans l’exploitation des résultats et des conclusions de l’analyse 

statistique de données routières. Ces analyses, indispensables en gestion prévisionnelle de l’entre-

tien routier, ne peuvent être menées sans un guidage rigoureux par « l’expertise métier ». Il est donc 

proposé de n’introduire une variable explicative de façon explicite dans la formulation de la loi 

d’évolution d’un indicateur que si les analyses statistiques et « l’expertise métier » s’accordent sur 

son infl uence. L’infl uence des autres variables potentiellement explicatives (d’après l’expertise) ne 

pourra être prise en compte que globalement et au travers du concept de robustesse [3].

Cette étude pointe certaines voies de progrès, notamment en ce qui concerne la constitution et la 

gestion des bases de données routières.

Au-delà des données qui sont collectées pour une gestion de l’entretien à court terme, ces bases 

doivent être enrichies des variables explicatives nécessaires pour anticiper l’évolution de l’état des 

chaussées et l’effet des travaux d’entretien. Ce sont généralement des données acquises lors des 

travaux de construction ou de renforcement (les caractéristiques essentielles des matériaux, par 

exemple) et malheureusement perdues par la suite, lors du passage de la phase de construction à 
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la phase de gestion de la route. C’est donc dans cette phase critique que des progrès substantiels 

peuvent être faits.

Il est aussi très clair – mais les évidences le deviennent souvent après qu’on en a fait le constat 

– qu’il est diffi cile de traiter par des voies purement statistiques l’évolution d’un indicateur qui 

combine au moins deux phénomènes physiques distincts, en l’occurrence la fi ssuration de fatigue 

et la fi ssuration par retrait thermique, surtout lorsqu’ils ont des origines et des modes d’évolution 

distincts. Le gestionnaire, lorsqu’il (re-)défi nit les procédures d’auscultation de son réseau, peut 

donc voir un intérêt – à moyen et à long terme – à recueillir des données élémentaires traduisant des 

phénomènes physiques bien identifi és, même s’il n’en voit pas l’utilité immédiate. Ainsi, en faisant 

relever de façon distincte les fi ssurations de fatigue et les fi ssurations thermiques, et même si cette 

distinction n’est pas indispensable pour une évaluation du réseau tel qu’il se présente au moment 

de l’auscultation (court terme), le gestionnaire se donnera les moyens de construire des modèles 

d’évolution plus pertinents et plus précis pour ces phénomènes et, ainsi, de conduire une gestion 

prévisionnelle (à long terme) plus sûre.

D’une façon générale, la qualité des informations disponibles dans la base est déterminante pour 

la pertinence des études dans lesquelles elles sont utilisées, notamment pour la modélisation du 

comportement des chaussées. Les causes d’imprécisions sont multiples et nécessitent des actions 

correctives appropriées :

– les méthodes de recueil de données – et notamment de recueil visuel – souffrent, aujourd’hui 

encore, d’une précision insuffi sante. Les progrès qui sont faits régulièrement sur ce point laissent 

espérer une amélioration graduelle des analyses, donc des lois d’évolution des dégradations ;

– le référentiel (le système de localisation des informations) évolue au gré des travaux de rectifi ca-

tion de géométrie, par exemple, et il est important que le gestionnaire ait une très bonne traçabilité 

de ces évolutions ;

– d’autres informations, comme les travaux effectivement réalisés, doivent être tenues à jour. Seuls 

les services de terrains peuvent veiller effi cacement à ces mises à jour et il est donc important qu’ils 

soient sensibilisés à ces tâches ; pour cela, il faut qu’ils soient, sous une forme ou une autre, béné-

fi ciaires des travaux qui sont faits sur les bases de données.

D’un point de vue plus purement statistique, on notera que la base de données originelle comportait 

de nombreuses sections identiques4 (tant du point de vue des valeurs des relevés de dégradation que 

de celles prises par les variables explicatives) et un nombre non négligeable de valeurs aberrantes 

(relevés de dégradation non progressifs dans le temps, dégradation diminuant dans le temps, etc.). 

Des études complémentaires doivent porter sur la prise en compte de la non-indépendance des 

relevés effectués sur des sections contiguës : dans le cadre de la MADS, des méthodes telles que la 

modélisation marginale [16] ou la modélisation par fragilité [17] permettent de prendre en compte 

cette corrélation entre sections adjacentes.

REMERCIEMENTS

Les auteurs remercient la Direction des routes, et le SETRA en particulier, 
pour leur avoir donné accès aux données recueillies dans le cadre des 
opérations périodiques d’évaluation du réseau routier national (opéra-
tions IQRN). 

4 Il s’agissait le plus souvent de sections contiguës.



41BLPC • n°261-262 • avril/mai/juin 2006

RÉFÉRENCES BIBLIOGRAPHIQUES

1 Conception et dimensionnement des structures 
de chaussée, Guide technique LCPC-SETRA, 
1994.

2 RÈCHE M., Effet des travaux d’entretien sur les 
lois d’évolution des dégradations de chaussées, 
Thèse de doctorat ès sciences de l’ingénierie 
civile, université Blaise Pascal - Clermont II, 
Clermont-Ferrand, 2004, 169 pages.

3 LEPERT P., SAVARD Y., LEROUX D., RÈCHE M., 
Méthodes statistiques de prévision de l’évolution 
d’une chaussée, Bulletin des laboratoires des 
ponts et chaussées, 250-251, 2004, pp. 13-31.

4 LEPERT P., LEROUX D., SAVARD Y., Use of pavement 
performance models to improve effi ciency of 
data collection procedures, 3rd International 
Symposium on Maintenance and Rehabilitation of 
Pavements and Technological Control, University 
of Minho, Guimaraes, Portugal, 2003.

5 LEROUX D., LEPERT P., RÈCHE M., SAVARD Y., 
Comparison of three statistical methods 
for fatigue cracking prediction, 83rd TRB Annual 
Meeting, Washington D.C., États-Unis, 2004.

6 LEROUX D., Identifi cation de modèles d’évolution 
par régression non linéaire multivariables 
(méthode «  directe »), Projet de coopération 
franco-québécois sur les modèles de 
performances des chaussées, Rapport 9c, LCPC-
MTQ, Québec, 2003.

7 LEPERT P., RIOUALL A., Identifi cation de modèles 
d’évolution par régression non linéaire (méthode 
« indirecte »), Projet de coopération franco-
québécois sur les modèles de performances des 
chaussées, Rapport 9, 2002.

8 ENKEL S., Modélisation de la fi ssuration 
transversale par les chaînes de Markov, DESS 
de Modélisation stochastique et recherche 
opérationnelle, Bordeaux I, 1996, 82 pages.

9 COURILLEAU E., Analyse statistique de données 
routières appliquée au développement de 
modèles de gestion de l’entretien, Thèse de 
doctorat ès sciences de l’ingénierie civile, 
université Blaise Pascal – Clermont II, Clermont-
Ferrand, 1997, 148 pages.

10 DROESBEKE J.-J., FICHET B., TASSI P., Analyse 
statistique des durées de vie, Économica, 1989.

11  AKAIKE H., Information theory and an extension 
of the maximum likelihood principle, International 
Symposium on Information Theory, Budapest, 1973.

12 THERNEAU T.M., GRAMBSCH P.M., FLEMING P.R., 
Martingale-based residuals for survival models, 
Biometrika, vol. 77, 1990, pp. 147-160.

13 BERTRAND L., LEPERT P., Méthode de relevés des 
dégradations de surface des chaussées, Méthode 
des LPC 38.2, 1998.

14 ULLIDTZ P., Pavement analysis, Elsevier Science, 
1987.

15 Logiciel ALIZÉ-LCPC, Itech Entreprise, 1991.
16 WEI L.J., LIN D.Y., WEISSFELD L., Regression 

analysis of multivariate incomplete failure time 
data by modelling marginal distributions, Journal 
of the American Statistical Association, vol. 84, 
1989, pp. 1065-1073.

17 VAUPEL J.W., MANTON K.G., STALLARD E., The 
impact of heterogeneity in individual frailty on the 
dynamics of mortality, Demography, vol. 16, 1979, 
pp. 439-454.




