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RESUME
Cette étude vise a identifier, au travers des données provenant des campagnes
« Image qualité des routes nationales » (IQRN), les facteurs qui influent sur
le comportement des chaussées. Cette identification nécessite de mener
conjointement analyse statistique (tests de significativité) et « analyse métier ».
Deux méthodes statistiques ont été mises en ceuvre : une méthode de régression
non linéaire et une méthode fondée sur 'analyse des données de survie.
Appliquées aux chaussées souples et fissurées du réseau routier national (RRN),
ces méthodes ont permis de mettre en évidence le role de facteurs de structure,
de trafic et de climat sur I'évolution des chaussées. Ces méthodes ont aussi mis
en évidence les imperfections des bases de données routiéres de type « gestion
de réseau », ainsi que l'inadéquation de certaines méthodes statistiques a
I'analyse des données étudiées.

Application of statistical methods for analyzing pavement
evolution to the IQRN quality campaign

ABSTRACT
This study seeks to identify, through the use of data stemming from “National
Road Quality Image” (French acronym: IQRN) campaigns, the set of factors
that influence road pavement behavior. This identification effort entails jointly
conducting a statistical analysis (significance testing) and a “road operator”
analysis.
Two statistical methods were implemented, one featuring nonlinear regression
techniques and the other based on a pavement survival data analysis. Applied
to both flexible and cracked pavements within France’s national road network,
these methods have enabled highlighting the impact of structural, traffic and
climatic factors on pavement evolution. Such methods have also underscored the
imperfections inherent in “network management” type road databases, along with
the inappropriateness of certain statistical methods for analyzing collected study
data.
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L’optimisation de la gestion de I’entretien routier sur les moyen et long termes suppose une bonne connaissance des
lois qui gouvernent I’évolution des dégradations de chaussées. De trés nombreux essais de laboratoire ont été réalisés
depuis des décennies sur les matériaux de chaussées et ont permis d’établir des modéles de comportement trés éla-
borés, notamment vis-a-vis des phénoménes de fatigue mécanique (fissuration, déformations permanentes, etc.). Ces
modeles ont, eux-mémes, été intégrés dans des méthodes de dimensionnement qui, une fois évaluées sur des sections
tests, ont été largement appliquées sur le réseau routier national (RRN) francais. Cette approche est-elle suffisante
pour prévoir le comportement des chaussées construites sur les différents réseaux routiers, qui subissent des sollici-
tations d’exploitation et d’environnement réelles extrémement diverses ? Peut-on faire I’hypothése que ces chaussées
se comportent conformément aux modeles établis et se dispenser ainsi d’un lourd et difficile travail d’observation et
d’analyse de leur comportement réel ?

Les auteurs, comme bien d’autres spécialistes dans le monde, répondent a cette question par la négative. Les modeéles
élaborés a partir d’expérimentations réalisées dans les conditions trés maitrisées d’un laboratoire, méme s’ils sont
validés par le suivi d’'un nombre, forcément restreint, de sections tests, ne peuvent suffire a décrire avec fiabilité le
comportement réel de toutes les sections d’un réseau, considérées individuellement. Des études ont montré que de
trées nombreuses variables affectaient ce comportement, qui ne pouvaient pas toutes étre considérées dans les essais
de laboratoire et donc dans les modeles qui en résultent. Par ailleurs, les méthodes de dimensionnement ne visent pas
a maitriser I’évolution des dégradations durant toute la vie de la chaussée, mais plutét a ne pas dépasser certains
seuils critiques. Ainsi, dans la méthode frangaise, on cherche a maitriser « ... la probabilité pour qu’apparaissent,
au cours d’une certaine période, des désordres qui impliqueraient des travaux de renforcement assimilables a une
reconstruction de la chaussée... ».

Les travaux de modélisation de I’évolution des dégradations de chaussées par analyse statistique d’observations
systématiques faites en site (¢’est-a-dire de bases de données) se heurtent a des difficultés : complexité de 1’évolution
réelle des chaussées, rareté de certaines informations portant justement sur les variables explicatives de cette évolu-
tion, incertitudes diverses qui affectent les observations de site ou leur localisation, plage de variation restreinte de
certaines variables, etc. L’étude des bases de données reléve d’une observation du monde réel avec tout ce que celui-
ci comporte de complexe et d’imparfait. La puissance des outils statistiques ne permet pas toujours de surmonter
completement ces difficultés. Pour autant, la mise en ceuvre de cette approche est incontournable : elle seule apporte
un « retour d’informations » indispensable sur le comportement des chaussées, sous une forme exploitable pour la
gestion prévisionnelle de ’entretien (les lois d’évolution des dégradations). A supposer que les chaussées d’un type
donné, d’un dimensionnement donné, se comportent en moyenne comme le prévoient les méthodes de dimensionne-
ment, une section particuliére de ce type ne suit jamais exactement cette moyenne, qui reste virtuelle. Et la gestion
rationnelle de ’entretien routier vise justement a adapter chaque technique, chaque séquence d’entretien, a la section
précise a laquelle elle s’applique. Comme le souligne cet article, les deux démarches (connaissances mécaniques
issues d’essais de laboratoire, étude statistique de bases de données) ne sont pas a opposer, tout au contraire : elles
sont complémentaires et doivent étre étroitement associées, les connaissances mécaniques devant guider [’analyse
statistique. Celle-ci peut pointer des variables qui ne sont pas encore prises en compte dans les méthodes de dimen-
sionnement et qui conditionnent néanmoins leur comportement.

L’étude du comportement réel des chaussées par l’analyse statistique des bases de données routieres est une voie
de progres de la gestion des routes. Elle doit rester prudente et modeste, en raison des difficultés auxquelles elle se
confronte. Elle doit constamment rechercher des améliorations, notamment dans la définition des méthodes et dans
la qualité des bases de données (des moyens de recueil et de la gestion des données). Elle constitue un retour d’expé-
rience indispensable.
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INTRODUCTION

L’optimisation de la gestion de I’entretien routier, sur les moyen et long termes, nécessite de connaitre
les facteurs susceptibles d’influer sur le comportement des chaussées. Ces facteurs, qualifiés de
« variables explicatives » lors de 1’étape de modélisation, peuvent étre liés a la structure des chaus-
sées (épaisseurs des différentes couches), au trafic (de dimensionnement ou réel) ou encore aux
conditions climatiques (hauteur des précipitations, températures extrémes, indice de gel) [1]. Afin
d’identifier plus slirement ces facteurs, des modeles statistiques sont mis en place : issus d’études
antérieures [2-5], ils permettent d’exprimer les dégradations observées sur des sections de route
en fonction de I’age de celles-ci et d’une ou de plusieurs variables explicatives. Cette étape de
modélisation du comportement des chaussées repose donc sur I’observation de 1’évolution d’un

échantillon représentatif de sections et sur 1’analyse statistique de ces observations.

Dans le cas présent, I’échantillon représentatif est issu de la base de données IQRN. Cette base, de
type « gestion de réseau », rassemble les données de dégradation de surface relevées depuis 1993
sur les routes nationales frangaises, ainsi que certaines de leurs caractéristiques, essentiellement en
termes de structure et de trafic. Pour enrichir les modeles statistiques ultérieurs, des informations
complémentaires, relatives aux conditions climatiques et recueillies aupres de Météo-France, ont

été ajoutées a I’échantillon analysé.

Dans la présente étude, des méthodes d’analyse statistique sont appliquées a une sous-population
de la base de données IQRN. Sous réserve de leur adéquation aux données, elles doivent permettre
de mettre en évidence le role de plusieurs facteurs dans 1’évolution de la fissuration des chaussées
bitumineuses épaisses et souples. En dernier lieu, une « expertise métier » est menée dans le but de
corroborer les résultats issus de I’analyse statistique. Cette expertise consiste en I’interprétation des
résultats statistiques en fonction des connaissances disponibles dans le domaine routier.

METHODES STATISTIQUES

M Présentation
Quatre méthodes de modélisation de 1’évolution des chaussées ont été étudiées.

© La méthode directe [6] : il s’agit d’une méthode de régression non linéaire multiple.

® La méthode indirecte (MI) [7] : elle associe un procédé d’ajustement itératif et une régression
multilinéaire.

© La méthode des classes [8] : elle s’appuie sur la théorie des chaines de Markov et de leurs pro-
priétés de stationnarité.

® La méthode d’analyse des données de survie (MADS) [2, 9] : elle s’appuie sur les propriétés

paramétriques des modeles pour données de survie.

Ces méthodes supposent que les équations mathématiques régissant les lois d’évolution sont pré-
définies. Dans le cas des trois premieres méthodes, ces équations sont habituellement de type sig-
moide tandis que, dans le cas de la MADS, la loi d’évolution est ordinairement une loi de Weibull.
Dans la présente étude, seules les méthodes MI et MADS ont été mises en ceuvre. Leur principe
est brievement rappelé ci-dessous (on trouvera une description complete de cette méthodologie

statistique dans [3]).

B Méthode indirecte (M)

> Modélisation
Cette méthode consiste a modéliser un indicateur de dégradation, tout en respectant une hypothese
de régularité qui veut qu’une dégradation tende naturellement a croitre au cours du temps. Il existe

de nombreuses fonctions respectant cette hypothese de régularité, parmi lesquelles les fonctions
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linéaire, exponentielle, sigmoide... C’est cette derniere qui est retenue ici pour le modele d’évolu-
tion ; celui-ci s’ écrit :
"
ki(t) = ——, (1)

u; u;

tol +t
ou k(t) est un coefficient d’évolution, croissant de 0 a 1, associ€ a la i* section, t_ . est I’age
auquel le coefficient d’évolution atteint la valeur 0,5 et u, est un parametre de forme de la courbe

d’évolution.

Cette formulation permet de déterminer les coefficients t . et u, propres a la i section, grace a une
régression linéaire portant sur I’ensemble des observations faites sur cette section, et effectuée sous
forme itérative. Deux ou trois itérations suffisent a obtenir une précision suffisante pour les valeurs
des parametres. On cherche ensuite & exprimer ces valeurs en fonction de n variables caractéristi-

ques des sections de routes, au travers des expressions suivantes :

n
u=ue[TV;", (2)
i=1
VP
tm =tmo[ TV} (3)

=1

ou V,, V..,V sontles variables explicatives anticip€es par I’« expertise métier ». Une trans-
formation logarithmique des équations (2) et (3) permet de déterminer les coefficients o, et Bj par

ajustement de régressions linéaires univariées (cas ou n = 1) ou multiples (cas ot n > 1).

> Mise en ceuvre
Pour chacun des deux parametres u et t_, trois types de régressions lin€aires sont effectués.

O Le premier consiste en une régression linéaire univariée : les variables explicatives sont intégrées
a tour de rdle dans le modele de régression. Un test de significativité permet de déterminer si un
coefficient o, est significativement différent de 0, c’est-a-dire si la variable explicative V, associée
a ce coefficient a un impact significatif sur le parametre étudié. Plus précisément, ce qui est calculé
est la probabilité critique P, qui mesure I’accord entre I’hypothese testée (H, : o, = 0) et le résultat
obtenu : plus cette probabilit€ critique est proche de 0, plus forte est la contradiction entre H et le
résultat obtenu. On considere habituellement que I’hypothese nulle H, doit €tre rejetée des que P est
inférieure a 5 %. La régression univariée, qui permet d’éviter la redondance d’information fournie
par plusieurs variables explicatives (phénomene statistique de multicolinéarité), présente cepen-
dant I’inconvénient de ne tenir compte que d’une partie de I’information disponible et conduit, par

conséquent, a des résultats peu satisfaisants.

® Le deuxieme type de régression linéaire consiste en une régression par triplets : les variables
explicatives sont intégrées trois par trois dans le modele de régression. Le triplet de variables expli-
catives retenu comme étant le plus explicatif 1’est au terme d’une procédure de comparaison des
vraisemblances de chacun des modeles. Cette procédure, qui integre davantage d’information que la
régression univariée, suppose que les variables explicatives ne soient pas fortement corrélées : pour
éviter ce phénomene de multicolinéarité, le choix de ne retenir conjointement que trois variables

explicatives semble constituer un compromis raisonnable.

© Le troisieme type de régression linéaire consiste en une régression multiple : toutes les variables
explicatives non corrélées sont introduites dans le modele, puis une méthode de sélection descen-
dante est utilisée ; a chaque étape, la ou les variables explicatives non significatives sont retirées du
modele, et un test statistique permet de déterminer si le retrait de cette variable ou de ces variables

améliore la qualité de 1’ajustement.
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Pour chacun de ces types de régression, le coefficient de détermination — qui quantifie le pourcen-
tage de variabilité des parametres expliqué par le modele — est calculé. Outre son caractere informa-
tif, ce coefficient permet également de comparer entre eux les différents modeles de régression.

Enfin, la bonne adéquation du modele de régression linéaire aux données est jugée dans tous les cas
par I’étude de I’hypothese de normalité des résidus.

H Méthode d’analyse des données de survie (MADS)

> Modélisation

Cette méthode suppose que 1’dge T auquel une section atteint un seuil de dégradation T est une
variable aléatoire suivant une loi de vecteur de parametres 6, de fonction de répartition F(t) et de
densité de probabilité f(t) = F'(t). L’ objectif de cette méthode est d’identifier la loi de probabilité de
T_par I’estimation de ses parametres. A cette fin, on calcule la probabilité de la réalisation de ce qui
est observé sur chaque section : ¢’est la fonction de vraisemblance (FV), qui est notée L(0).

Une particularité de I’analyse des données de survie est la présence d’une variable aléatoire appelée
censure et traduisant la possible non-observation du phénomene étudié — en 1’occurrence 1’atteinte
du seuil t. Il existe trois types de censure :

— une censure a gauche, si lors de la premicre observation faite sur la i® section au temps t, , le seuil
de dégradation 1 est déja atteint : dans ce cas, la contribution de cette section a la FV est F(t, ) ;

— une censure a droite, si lors de la derniere observation faite sur la i* section au temps t,,, le seuil de
dégradation T n’a pas €t€ atteint : dans ce cas, la contribution a la FV est 1 — F(t,,) ;

—une censure par intervalle, si 1’atteinte du seuil t par la i° section a eu lieu entre deux observa-
tions successives, réalisées aux temps t, et t, (t, <t,) : dans ce cas, la contribution a la FV est
F(t,) - F(t,).

En I’absence de censure, la contribution d’une section a la FV est f(t). L’expression finale de la FV
est alors le produit, pour chaque section, des quantités précédentes : si 1’on dispose de N sections,
on obtient finalement :

N
i i 83 B4
L(0) = [ TF(t)* [1=F(t)] ™ [F(tip) — F(tip) ] £(5)", (4)
i=1
ou les fonctions Sji, pour j = 1,... 4, sont les fonctions indicatrices des types d’événements observés,
c’est-a-dire qu’elles valent 1 respectivement en cas de censure a gauche, censure a droite, censure

par intervalle et absence de censure, et 0 sinon.

Une fois la FV obtenue, on cherche alors a calculer Iestimateur 0 qui est la valeur de 6 pour
laquelle cette FV est maximale. Cette analyse est répétée pour les seuils d’évolution T compris entre
0 % et 100 % par pas de 5 %.

L’hypothese couramment faite est que la variable al€atoire T_suit une loi de Weibull [10] : cette
loi, qui dépend de deux parametres, est trés souple et permet de supposer que la dégradation d’une
section ne peut que s’accentuer dans le temps. Si 1’on note respectivement y et u les parametres de
forme et d’échelle de la loi de Weibull, X le vecteur des variables explicatives et [3 le vecteur des
coefficients associés aux variables explicatives, alors :

F(t) = 1-exp| - (1) -exp(B'X) | (5)
et

£() = yexp(BX)u’t! " exp| - ()" -exp(B'X) | (6)

La fonction de survie, qui est définie comme la probabilité de rester en deca d’un seuil de dégrada-
tion donné au cours du temps, est égale a 1 — F(t). Une illustration en est donnée par la figure 1.
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figure 1

Fonction de survie pour le
seuil de 5 %, concernant
["étendue des fissurations
relevées sur les routes
nationales dans la zone du
CETE Rhone-Alpes.

T T
0 5 10 15 20
Temps (années)

> Mise en ceuvre

L algorithme de Newton-Raphson permet de déterminer les valeurs ¥, [i et f& qui maximisent la
FV L(©)=L((y,u,B)) - Comme pour la méthode précédente, le choix des variables explicatives
prises en compte dans 1’analyse statistique repose sur « I’expertise métier ». La méthode de modé-
lisation permet alors de confirmer ou d’infirmer le caractére explicatif de ces variables. A cette fin,
un test de significativité permet de déterminer si un coefficient B, est significativement différent de
0, c’est-a-dire si la variable explicative X, associée a ce coefficient a un impact significatif sur le

parametre étudié.

La encore, trois types d’approches — en fonction du nombre de variables explicatives incluses dans

le modele — sont retenues :

—une approche univariée, destinée a identifier individuellement les variables explicatives impli-
quées dans le processus de fissuration ;

— une approche par triplets de variables explicatives, qui permet d’enrichir I’information contenue
dans le modele tout en conservant une simplicité de calcul lors de la résolution du modele ;

—une approche multiple, qui consiste a intégrer le maximum de variables explicatives non redon-
dantes, puis a ne conserver que celles effectivement significatives, au terme d’un processus par
sélection descendante.

La comparaison des différents modeles est effectuée grace au critére d’ Akaike [11], qui est défini

par :
AIC(m) =2 (log[L(0)] - m) %)
ou m est la dimension de 6. Le meilleur modele est celui qui maximise ce critere.

Enfin, une étude de 1’ajustement des différents modeles aux données est réalisée, au travers de
I’analyse des résidus martingales [12].
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tableau 1

Dates des relevés effectués
par tiers sur le réseau
routier national.

LA CAMPAGNE IQRN

H Généralités

L’opération « Image qualité des routes nationales » (IQRN), engagée par la Direction des routes
en 1992, a pour objectif d’évaluer et d’assurer un suivi de 1’état du réseau routier national : elle
consiste a relever, par tiers chaque année, et suivant le mode opératoire M3 de la méthode LPC
n° 38.2 [13], les dégradations de surface des quelques 30 000 km de routes nationales. Les moyens
d’auscultation, qui associent des relevés visuels — pour les fissurations, les dégradations de revéte-
ment et les réparations — et des mesures physiques par des appareils qualifiés — pour les déforma-
tions du profil en travers et I’adhérence sont exécutées et gérées par les centres d’études techniques
de I’'Equipement (CETE). Ils alimentent une base de données qui comprend aujourd’hui 150 000
sections de routes de 200 m chacune, sections sur chacune desquelles on dispose d’au moins trois
relevés consécutifs, conformément au tableau 1. Par ailleurs, et comme cela a été mentionné en

introduction, la base comporte également des informations sur les structures de chaussées et le trafic
lourd (TMJA).

Années de relevé
Relevé n° 1 Relevé n° 2 Relevé n° 3
1er tiers du RRN 1995 1998 2001
2¢ tiers du RRN 1996 1999 2002
3¢ tiers du RRN 1997 2000 2003

Il est important de noter que le mode M3 ne distingue que deux types de fissuration : la fissuration
transversale (de retrait) et les « autres fissurations ». Chaque type est lui-méme réparti en deux
catégories : les fissurations significatives et les fissurations graves, selon leur stade d’évolution.
L’indicateur sur lequel repose la présente étude concerne 1’étendue totale (significative et grave)
des « autres fissurations ». Il est calculé pour chaque section et exprimé en pourcentage. Cet indi-
cateur représente le rapport de la longueur de chaussée fissurée sur la longueur totale de la section,
et regroupe :

— la fissuration de fatigue, due a la répétition des efforts de traction par flexion au passage des char-
ges, et apparaissant dans les bandes de roulement ;
— la fissuration de la couche de roulement liée a une mauvaise exécution des joints de construction,

au vieillissement du liant ou a une sensibilité du bitume aux contraintes thermiques.

On congoit que ces deux types de fissuration apparaissent et se propagent plus ou moins rapide-
ment selon différents facteurs, tout d’abord les caractéristiques de conception des chaussées (struc-
ture, dimensionnement, caractéristiques du bitume), ensuite le niveau de contraintes induit dans la
chaussée au passage des poids lourds de charge utile supérieure a cinq tonnes (trafic), et enfin les
conditions climatiques en ce qui concerne la fissuration thermique. Suite a cette « expertise métier »
préalable, quatorze variables potentiellement explicatives — modélisant les facteurs ont été retenues
pour I’analyse statistique (tableau 2).

M Echantillonnage

L’étude, qui s’intéresse aux chaussées a assises bitumineuses et non traitées, a nécessité la constitu-
tion de différents échantillons, en fonction :

— de leur origine géographique ;

— de I’entretien qu’elles avaient — ou non — regu ;

— des variables explicatives potentielles effectivement disponibles ;
— du nombre de relevés successifs disponibles sur chaque section.
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tableau 2

Variables explicatives
potentielles retenues
pour I'analyse statistique
d’aprés une premiere

« analyse métier ».

Catégorie Identifiant Description*
EpBB Epaisseur de la couche de roulement (avant entretien éventuel)
EpCB® Epaisseur de I'assise
Variables EpCr® Epaisseur de la derniére couche de roulement mise en place
de structure EpCNT? Epaisseur du sol support
EpEg? Epaisseur équivalente (calculée selon la méthode d’Odemark [14])
Epst? Déformation tangentielle (ALIZE-LCPC [1, 15])
TD Trafic de dimensionnement (trafic Poids Lourds journalier moyen
de la voie la plus chargée)
Variables
de trafic TR Trafic réel (idem)
RT Rapport du trafic de dimensionnement sur le trafic réel
Tmax Température maximale mensuelle, calculée sur les 3 ans
Variables Tmin Température minimale mensuelle, calculée sur les 3 ans
de climat Prec Hauteur des précipitations mensuelles, calculée sur les 3 ans
Gel Durée de gel mensuelle, calculée sur les 3 ans
Variable d’état Aft0° Fissuration (en %) au dernier relevé avant entretien

*

Les unités sont celles du Systéme international, sauf celles associées aux températures (degrés Celsius).
a Variables présentant a I'origine des valeurs manquantes et exclues des échantillons complets.
b Variables présentes uniquement dans les échantillons de sections entretenues.

> Classification suivant I’origine géographique

Etant donné la taille de la base IQRN, seules les données issues des CETE Rhone-Alpes et Sud-
Ouest ont été retenues pour 1’analyse statistique des sections sans entretien : outre le fait que les don-
nées issues de ces deux CETE étaient en nombre suffisant pour assurer la pertinence de 1’analyse
statistique ultérieure, elles présentaient des différences importantes en matiere de caractéristiques cli-
matiques. Les données issues de ces deux CETE ont été étudiées séparément, puis conjointement.

> Classification suivant I’entretien regu

Une premiere analyse statistique a porté sur les sections du CETE Rhone-Alpes, en différenciant
les sections qui avaient recu un entretien de celles qui n’en avaient pas regu : 1’objectif était alors
de déterminer si ’entretien modifiait 1’évolution des chaussées. Dans 1’affirmative, une seconde
analyse devait, quant a elle, porter sur les seules sections entretenues : il s’agissait alors de détermi-
ner quels étaient les facteurs pouvant éventuellement influer sur la fissuration des chaussées apres
entretien. A ce stade, deux facteurs spécifiques aux chaussées entretenues ont été introduits dans le
modele statistique : le niveau de fissuration avant entretien et I’épaisseur de la nouvelle couche de
roulement mise en place.

> Classification suivant les variables explicatives effectivement renseignées

Les champs de la base correspondant aux variables explicatives du tableau 2 ne sont pas toujours
renseignés sur toutes les sections. Chaque étape de la modélisation a donc nécessité la constitution
de deux types d’échantillons différents :

- un échantillon dit « complet » (C), incluant toutes les sections mais ne comprenant que les varia-
bles explicatives qui ne présentaient pas de valeurs manquantes ;

- un échantillon dit « réduit » (R), incluant uniquement les sections pour lesquelles toutes les varia-
bles explicatives étaient disponibles.

> Classification suivant le nombre d’observations successives disponibles

Enfin, I’application de la méthode indirecte nécessite de disposer d’au moins deux relevés de dégra-
dation non nuls par section. En conséquence, des échantillons de tailles différentes ont dii &tre spé-
cifiquement créés pour chacune des méthodes statistiques destinées a leur étre appliquées.
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> Récapitulatif
Le tableau 3 récapitule les dix-huit échantillons différents qui ont di étre constitués pour I’analyse

statistique.
tableau 3 M MADS
' . Récapitulatif des CETE Critére
échantillons complets (C) c R c R
et réduits (R) en termes
deffectifs. (a) Sud-Ouest Sans entretien 879 225 1197 365
(b) Rhéne-Alpes Sans entretien 569 434 701 526
(c) Rhone-Alpes Avec entretien 338 84 759 193
Total des sections sans entretien (a+b) 1448 659 1898 891
Total des sections de Rhone-Alpes (b+c) 907 518 1460 719
ANALYSE STATISTIQUE
M Statistiques descriptives
Les caractéristiques des données étaient similaires pour tous les échantillons. Parmi les sections non
entretenues, les sections de chaussées en grave-bitume (72,7 % pour le Sud-Ouest et 93,1 % pour
le Rhone-Alpes) étaient plus représentées que les chaussées en grave non traitée. Le type de trafic
prédominant était le type T1 (57,3 % pour le Sud-Ouest et 58,3 % pour le CETE Rhone-Alpes), qui
correspond a un trafic poids lourds journalier moyen compris entre 300 et 750 camions. Le suivi
des dégradations pour le CETE Sud-Ouest (respectivement le CETE Rhone-Alpes) s’est traduit
dans 26,5 % (resp. 0 %) des cas par trois relevés nuls, dans 26,5 % (resp. 70,3 %) des cas par deux
relevés nuls, dans 28,7 % (resp. 20,7 %) des cas par un relevé nul et dans les 18,3 % (resp. 9,0 %)
des cas restants par I’absence de relevé nul. Le tableau 4 donne les caractéristiques des valeurs des
trois relevés en termes de distribution.
tableau 4 _
Minimum, maximum, i 1Q* 2Q ) sQ —
moyenne et quartiles des Sud-Ouest 0,0 0,0 0,0 4,7 0,0 100,0
valeurs de ['indicateur de 1er relevé
fissuration totale (en %). Rhéne-Alpes 0,0 0,0 0,0 2,8 0,0 95,0
Sud-Ouest 0,0 0,0 0,0 19,7 27,0 100,0
2¢ relevé
Rhéne-Alpes 0,0 0,0 0,0 8,1 4,0 100,0
Sud-Ouest 0,0 0,0 34,0 43,0 93,0 100,0
3° relevé
Rhéne-Alpes 1,0 20,0 69,0 60,8 100,0 100,0

* 1Q = 1°" quartile, 2Q = 2° quartile (médiane), 3Q = 3° quartile.

H Analyse en composantes principales

Des analyses en composantes principales (ACP) ont été effectuées pour chaque échantillon, mais
elles n’ont pas permis d’en tirer des informations relatives a la structure des données : en effet,
pour s’assurer de I’explication de 90 % de la variance' — critére habituellement retenu dans le cadre
d’une ACP — il fallait retenir au moins six axes. De plus, les valeurs propres associées aux variables
explicatives étaient faibles, ce qui empéchait d’attribuer a chacun de ces axes une signification
claire. Enfin, la représentation graphique des individus (correspondant aux sections de route) sui-
vant ces nouveaux axes a montré un rapprochement des points sous forme de nuage dense, rendant
impossible toute interprétation de I’emplacement des individus en fonction des axes de I’ ACP.

' Il s’agit d’'une proportion cumulée.
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l Application de la méthode indirecte

Cette méthode n’a pas permis de mettre en évidence des variables explicatives significatives : dans
tous les cas, le coefficient de corrélation R* n’excédait jamais 0,3. De plus, I’adéquation de cette
méthode aux jeux de données étudiés s’est révélée mauvaise, quel que soit le type de régression
utilisée pour la mise en ceuvre (cf. supra). Une étude graphique des résidus issus de la régression
linéaire de log(z ) (3) montre que la normalité des résidus n’était pas assurée (figure 2) : en effet,
leurs quantiles ne coincidaient pas avec ceux d’une distribution normale. Cette étude graphique a
été complétée par un test statistique de normalité de ces résidus, qui a conduit au rejet de 1’hypo-
theése nulle de normalité dans tous les cas. Aussi les résultats issus de la méthode indirecte ne peu-

vent-ils étre considérés comme valides ; pour cette raison, ils ne sont pas rapportés ici.

Une explication, au moins partielle, de cette inadéquation peut étre avancée. La premiere étape
de cette méthode procede « par différence entre les observations successives faites sur une méme
section ». Ses résultats sont donc trés sensibles aux défauts de référentiel. Si le référentiel terrain
(les PR) a été modifié par suite de travaux (redressement de virage, révision de bornage) sans que
cela soit reporté dans la base de données, deux observations affectées a la méme section dans la
base pourront en réalité provenir de deux sections distinctes. L’examen de la base existante montre
que ce phénomene ne peut pas €tre considéré comme absolument marginal. En outre, les erreurs de

recueil affectant deux relevés successifs sont amplifiées par 1I’opération de soustraction.

figure 2
Quantiles des résidus Résidus studentisés
(cercles) issus de la
régression de log(t ), en 4 °

fonction des quantiles
d’une loi normale (droite).

3 2 1 0 1 2 3
Quantiles de loi normale

B Application de la méthode d’analyse des données de survie

Contrairement a la méthode indirecte, la MADS a conduit a des modeles présentant une bonne
adéquation aux données routieres étudiées. Une analyse graphique des résidus a permis de constater
que le modele de Weibull ajustait convenablement les données (figure 3) : ainsi, les résidus de type
« déviance » sont presque tous compris dans I’intervalle [— 3, 3), ce qui est parfaitement satisfai-
sant. De plus, cette étude sur les résidus a permis d’affirmer que le modele de Weibull était plus

adapté aux données que d’autres modeles paramétriques (log-normal, exponentiel, etc.).
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figure 3

Résidus (cercles noirs) de
type « déviance » a gauche
et de type « dfbetas a
droite ».

Résidus déviance Résidus dfbetas
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> Analyse uni-variée

Dans cette approche, on teste les variables potentiellement explicatives une a une. Il apparait que
I’épaisseur des différentes couches influence significativement le phénomene de fissuration. En
particulier, 1’épaisseur du revétement (variable EpBB) est significative pour I’échantillon du CETE
Rhone-Alpes (pour tous les seuils de fissuration S), pour I’échantillon du Sud-Ouest (pour S < 60)
et pour I’échantillon réduit des deux CETE réunis (pour tout S). Les autres variables d’épaisseur
EpCB, EpCNT, EpEq et Epst sont, elles, apparues significatives pour les échantillons du CETE
Rhone-Alpes et des deux CETE réunis (pour tout S) dans le cas des échantillons réduits>.

En ce qui concerne les variables climatiques, les températures maximale — pour Rhone-Alpes et les
deux CETE réunis (pour tout S) — et minimale — pour les deux CETE réunis dans le cas de 1’échan-
tillon réduit — agissent significativement sur la fissuration. L’indice de gel est également apparu
significatif pour les deux CETE étudiés séparément (quasiment pour tout S), et pour les deux CETE
étudiés conjointement lorsque S était inférieur a 50 % (échantillon complet) ou supérieur a 70 %
(échantillon réduit). Enfin, la hauteur des précipitations est apparue significative pour le CETE
Rhone-Alpes et les deux CETE réunis (pour tout S), et pour le Sud-Ouest (pour tout S) dans le cas
de I’échantillon complet.

Enfin, le trafic réel (variable TfR) est apparu significatif pour tous les échantillons complets (pour
tout S), et pour le CETE Rhone-Alpes et les deux CETE réunis (pour tout S) dans le cas d’échan-

2 Rappelons que ces variables sont exclues des échantillons complets, car présentant de nombreuses valeurs manquantes
pour ces échantillons.
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tillons réduits. Quant au rapport des trafics (RT), il est apparu significatif pour le Sud-Ouest (pour
tout S) dans le cas de 1’échantillon complet, et pour le CETE Rhone-Alpes et les deux CETE réunis

(pour S <60 %).

> Analyse par triplets

Cette analyse présente 1’avantage, par rapport a la précédente, d’étudier 1’effet conjoint de plusieurs
variables explicatives. Cependant, la procédure de sélection du triplet de variables explicatives le
plus explicatif ne tient pas compte de la possible multicolinéarité de ces variables. Aussi retrouve-
t-on souvent, parmi les variables explicatives les plus significatives, des variables fortement corré-
1ées, comme la température minimale et 1’indice de gel (coefficient de corrélation égal a 0,86).

Les variables d’épaisseur des couches (EpBB et EpCB) sont apparues significatives lors de 1’étude
des échantillons réduits des deux CETE (pour tout S), considérés séparément ou conjointement.
Dans tous les cas, les températures maximale et/ou minimale, la hauteur des précipitations et I’in-
dice de gel sont également apparues significatives. Enfin, deux variables caractérisant le trafic sont
apparues significatives dans certains cas : le rapport du trafic réel au trafic de dimensionnement
(variable RT) sur I’échantillon complet pour le CETE Sud-Ouest (pour S > 65), et le trafic de
dimensionnement (variable TfD) sur I’échantillon réduit pour les deux CETE étudiés conjointe-
ment (pour tout S).

> Analyse par sélection descendante

Le tableau 5 fournit les résultats de 1’analyse statistique par sélection descendante, qui sont simi-
laires a ceux des analyses précédentes. Ainsi, 1’épaisseur de la couche de roulement (EpBB), les
températures maximale (Tmax) et minimale (Tmin), la hauteur des précipitations (Prec), I’indice
de gel (Gel) et le trafic réel (TfR) constituent des variables significatives. Les épaisseurs des autres
couches (EpCB et EpCNT) et les autres variables liées au trafic (TfD et RT) apparaissent comme
significatives de facon plus ponctuelle.

tabl 5
4 a ,eal.j Sud-Ouest Rhéne-Alpes Réunis
nalyse par sélection Variable
descendante : seuils de c R c R c R
fissuration pour lesquels
les variables sont EpBB <60 <100 5 > 60 <35 5-100
significatives, pour les
échantillons complets (C) EpCB > 65 5-100 5-100
et réduits (R). EpCNT > 45 > 60 > 60
Tmax <90 5-100 >5 > 40 >10
Tmin > 35 <75 <100 5-100
Prec 5 5-100 5-100 5-100 5-100 5-100
Gel <30 5-100 5-100 5-100 5-100
TR >80 > 40 > 60 5-100
TD >80 5-100
RT <85 65-80

ETUDE DE L’EFFET D’'UN ENTRETIEN

© La premiere étape, consistant 2 comparer sections non entretenues et sections entretenues, s’est
faite en introduisant, dans le modele, une variable binaire indiquant, pour chaque section, la pré-
sence ou non d’une couche d’entretien. Un test de signification portant sur cette variable, apres
ajustement sur les autres variables explicatives®, a permis de conclure que les sections suivaient des
lois d’évolution significativement différentes (P < 0,001) selon qu’elles avaient bénéficié ou non de
travaux d’entretien. La figure 4 illustre cette différence en termes de fonction de survie : pour les

3 C’est-a-dire dans le cadre d’un ajustement multiple.
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figure 4
Fonctions de survie pour

. . Survie Survie
les sections sans entretien
(courbe en trait fin) et avec 1 ] Seuil de 5 % 1 Seuil de 20 %
entretien (courbe en gras). ]
0,8 | 0,8 |
0,6 | 0,6 |
8
0,4 | 0,4 |
0,2 | 0,2 |
0 | 0 |
0 5 10 15 0 5 10 15
Age de la chaussée Age de la chaussée

seuils représentés (5 et 20 %) et pour un age donné, une section entretenue présente une probabilité

plus faible de ne pas avoir atteint ces seuils qu’une section non entretenue.

® La seconde étape a consisté en une analyse de la significativité des variables explicatives, pour
I’échantillon comprenant toutes les sections entretenues du CETE Rhone-Alpes, ce CETE étant
celui pour lequel on disposait de I’'information nécessaire concernant les travaux d’entretien. Deux
nouvelles variables explicatives ont été introduites dans le modele multiple : 1’épaisseur de la cou-
che d’entretien mise en place (variable EpCr) et la valeur du dernier relevé de dégradation réalisé
avant entretien (variable Aft0).

Sur I’échantillon complet, une seule variable explicative est apparue significativement liée au phé-
nomene de fissuration, et ce pour tous les seuils modélisés : il s’agit de la valeur du dernier relevé de
dégradation avant travaux d’entretien (P < 0,001). Sur I’échantillon réduit, trois types de variables
explicatives se sont révélées significatives :

— les épaisseurs des couches : il s’agit d’EpCr pour des seuils compris entre 30 et 45 % (P = 0,020),
d’EpBB pour des seuils compris entre 20 et 60 % et d’EpCB pour des seuils compris entre 30 et
55 % ;

— la hauteur des précipitations, pour des seuils compris entre 30 et 45 % (P = 0,030) ;

—la valeur du dernier relevé de dégradation avant entretien, pour des seuils compris entre 50 et

80 % (P = 0,040).
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H Interprétation physico-mécanique

Il est indispensable de chercher a interpréter les résultats obtenus par les analyses statistiques, tels
qu’ils sont présentés dans le paragraphe précédent, a la lumiére des connaissances accumulées par
les experts en comportement des chaussées, qu’elles proviennent d’essais de laboratoire, de suivi
de sections particulieres ou d’études de diagnostic de chaussées endommagées. Il est d’abord utile
de noter que, dans I’ensemble, les signes de ces coefficients s’appliquant aux variables explicatives
identifiées — présentés dans le tableau 6 — sont assez stables sur I’ensemble des seuils de dégrada-
tion modélisés, pour un échantillon donné. Par contre, une variation de signe survient parfois lors

du passage d’un échantillon a un autre.

tableau 6 . Signe Confirmation
Rappro‘ch-ement des Variable du coefficient Impact* . : 4
analyses statistiques et de par « I'expertise métier »
« l'expertise métier ». EpBB B accélération Non
EpCB + ralentissement Oui
Tmax + ralentissement Oui
Tmin + ralentissement Oui
Prec - accélération Oui
Gel + ralentissement Non
RT + ralentissement Oui
Aft0 - accélération Oui

*

Impact sur la vitesse d’évolution de la fissuration lorsque la valeur de la variable croit.

Certaines conclusions de 1’analyse statistique apparaissent immédiatement comme conformes a
« I’expertise métier ». Ainsi, plus 1’assise est épaisse, mieux la chaussée résiste a la fissuration
de fatigue. De méme, une diminution des précipitations se traduit par une meilleure résistance de
la chaussée a la fatigue : moins il pleut, moins la teneur en eau du sol ou de 1’assise non traitée
est élevée et plus ces couches sont « portantes ». On note encore que, pour un trafic réel donné,
plus fort était le trafic pris en compte lors du dimensionnement, mieux la chaussée se comportait.
Finalement, la fissuration d’une chaussée ayant fait 1’objet d’un recouvrement réapparait d’autant

plus vite que cette fissuration était étendue juste avant les travaux.

L’influence des températures auxquelles est soumise la chaussée est également explicable par les
connaissances du comportement des matériaux. Des températures moyennes annuelles élevées cor-
respondent a des climats ou les périodes froides, durant lesquelles les couches bitumineuses sont
durcies ou fragilisées par le froid, sont plus rares ou plus courtes. A défaut de connaitre les caracté-
ristiques précises des bitumes employés sur chaque section, il est toutefois difficile d’aller plus loin

dans cette interprétation.

A Iinverse, I’influence de 1’épaisseur de la couche de roulement (variable EpBB) n’est a priori pas
conforme a I’avis couramment formulé par les experts : d’apres 1’analyse statistique, plus la couche
de roulement est épaisse, plus la fissuration initiale apparait vite. Face a ce constat, il convient
d’abord de rappeler que I’indicateur analysé combine la fissuration de fatigue (remontant des cou-
ches d’assise vers la surface) et la fissuration thermique (descendant de la surface vers le fond de
la couche de roulement). Or, si la fissuration de fatigue remonte effectivement plus rapidement a
travers les couches de roulement plus fines, il n’en est pas de méme pour la fissuration thermique.
Selon la part de chaque type de fissuration dans la résultante observée, le sens de variation constaté
par I’analyse statistique peut ne pas étre en contradiction avec I’avis d’expert.

De méme, d’apres I’analyse statistique, plus élevé est I’indice de gel, moins rapide est I’évolution
de cette fissuration, ce qui va a I’inverse de toutes les connaissances acquises. La remarque faite
pour I'influence de I’épaisseur de la couche de roulement peut étre invoquée ici aussi. En outre, on
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note que la plupart des données des différents échantillons proviennent de chaussées hors gel (cou-
che de forme appropriée pour empécher le front de gel d’atteindre des sols gélifs), ce qui renforce

le questionnement sur le sens a donner a la significativité de I’effet de la variable gel.

La remarque concernant I’agrégation, au sein de I’indicateur analysé, de deux phénomenes phy-
siques distincts, influencés par des variables différentes, si elle permet d’avancer des explications
pour les divergences entre certaines déductions de I’analyse statistique et « I’expertise métier »,
peut conduire a s’interroger sur la convergence de ces approches en ce qui concerne I’influence
d’autres variables explicatives (épaisseur de I’assise, impact des précipitations, effet des températures
de fonctionnement). Il y a 1 des enseignements a en tirer pour la constitution des bases de don-
nées. Sur un plan plus opérationnel, la régle qui est proposée, pour 1’application de ces approches a
I’identification des lois d’évolution des dégradations, est la suivante :

— lorsque I’analyse statistique converge avec « I’expertise métier » pour déclarer une variable expli-
cative, celle-ci est retenue comme telle ;

— dans le cas contraire, la variable ne peut pas étre retenue dans la formulation de la loi.

L’influence des variables potentiellement explicatives (d’apres 1’expertise), mais non retenues au
terme de I’analyse statistique, ne pourra €tre prise en compte que globalement et au travers du
concept de robustesse.

CONCLUSIONS ET PERSPECTIVES

L’étude d’une partie de la base de données IQRN a permis de mettre en évidence 1’inadéquation de
la MI a I’analyse des données de dégradations de chaussées. Toutefois, une gestion toujours plus
précise du référentiel des bases de données pourrait, a terme, permettre de revoir cette conclusion.
A contrario, la MADS s’est révélée satisfaisante du point de vue de la qualité de 1’ajustement du

modele aux données de site.

I1 a été montré que, sur les échantillons analysés, certaines variables expliquaient partiellement mais
effectivement le développement de la fissuration, I’influence mise en évidence étant cohérente avec
les connaissances acquises par d’autres approches d’experts en comportement des chaussées (épais-
seur de la couche de base, températures d’environnement, précipitations). D’autres variables semblent
aussi influer sur le comportement de la chaussée, mais dans un sens inverse a celui auquel on pour-
rait s’attendre. Il en va ainsi de I’épaisseur du revétement ou de I’indice de gel. Enfin, 'impact de
certaines variables est suffisamment marginal pour ne pas ressortir des résultats des analyses sta-
tistiques : épaisseur de la couche de fondation, épaisseur équivalente de la chaussée, déformations
transversales en fond de couche telles qu’issues du dimensionnement, trafic de dimensionnement.
Ceci montre qu’il faut étre prudent dans I’exploitation des résultats et des conclusions de 1’analyse
statistique de données routieres. Ces analyses, indispensables en gestion prévisionnelle de 1’entre-
tien routier, ne peuvent étre menées sans un guidage rigoureux par « I’expertise métier ». Il est donc
proposé de n’introduire une variable explicative de facon explicite dans la formulation de la loi
d’évolution d’un indicateur que si les analyses statistiques et « I’expertise métier » s’accordent sur
son influence. L’influence des autres variables potentiellement explicatives (d’apres 1’expertise) ne

pourra étre prise en compte que globalement et au travers du concept de robustesse [3].

Cette étude pointe certaines voies de progres, notamment en ce qui concerne la constitution et la

gestion des bases de données routieres.

Au-dela des données qui sont collectées pour une gestion de 1’entretien a court terme, ces bases
doivent étre enrichies des variables explicatives nécessaires pour anticiper 1’évolution de 1’état des
chaussées et 1’effet des travaux d’entretien. Ce sont généralement des données acquises lors des
travaux de construction ou de renforcement (les caractéristiques essentielles des matériaux, par

exemple) et malheureusement perdues par la suite, lors du passage de la phase de construction a
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la phase de gestion de la route. C’est donc dans cette phase critique que des progres substantiels
peuvent étre faits.

Il est aussi tres clair — mais les évidences le deviennent souvent aprés qu’on en a fait le constat
— qu’il est difficile de traiter par des voies purement statistiques 1’évolution d’un indicateur qui
combine au moins deux phénomenes physiques distincts, en 1’occurrence la fissuration de fatigue
et la fissuration par retrait thermique, surtout lorsqu’ils ont des origines et des modes d’évolution
distincts. Le gestionnaire, lorsqu’il (re-)définit les procédures d’auscultation de son réseau, peut
donc voir un intérét — a moyen et a long terme — a recueillir des données élémentaires traduisant des
phénomenes physiques bien identifiés, méme s’il n’en voit pas I’utilité immédiate. Ainsi, en faisant
relever de facon distincte les fissurations de fatigue et les fissurations thermiques, et méme si cette
distinction n’est pas indispensable pour une évaluation du réseau tel qu’il se présente au moment
de I’auscultation (court terme), le gestionnaire se donnera les moyens de construire des modeles
d’évolution plus pertinents et plus précis pour ces phénomenes et, ainsi, de conduire une gestion
prévisionnelle (a long terme) plus siire.

D’une fagcon générale, la qualité des informations disponibles dans la base est déterminante pour
la pertinence des études dans lesquelles elles sont utilisées, notamment pour la modélisation du
comportement des chaussées. Les causes d’imprécisions sont multiples et nécessitent des actions
correctives appropriées :

—les méthodes de recueil de données — et notamment de recueil visuel — souffrent, aujourd hui
encore, d’une précision insuffisante. Les progres qui sont faits régulierement sur ce point laissent
espérer une amélioration graduelle des analyses, donc des lois d’évolution des dégradations ;

— le référentiel (le systeme de localisation des informations) évolue au gré des travaux de rectifica-
tion de géométrie, par exemple, et il est important que le gestionnaire ait une trés bonne tragabilité
de ces évolutions ;

— d’autres informations, comme les travaux effectivement réalisés, doivent étre tenues a jour. Seuls
les services de terrains peuvent veiller efficacement a ces mises a jour et il est donc important qu’ils
soient sensibilisés a ces taches ; pour cela, il faut qu’ils soient, sous une forme ou une autre, béné-
ficiaires des travaux qui sont faits sur les bases de données.

D’un point de vue plus purement statistique, on notera que la base de données originelle comportait
de nombreuses sections identiques* (tant du point de vue des valeurs des relevés de dégradation que
de celles prises par les variables explicatives) et un nombre non négligeable de valeurs aberrantes
(relevés de dégradation non progressifs dans le temps, dégradation diminuant dans le temps, etc.).
Des études complémentaires doivent porter sur la prise en compte de la non-indépendance des
relevés effectués sur des sections contigués : dans le cadre de la MADS, des méthodes telles que la
modélisation marginale [16] ou la modélisation par fragilité [17] permettent de prendre en compte
cette corrélation entre sections adjacentes.

Les auteurs remercient la Direction des routes, et le SETRA en particulier,
pour leur avoir donné acces aux données recueillies dans le cadre des
opérations périodiques d’évaluation du réseau routier national (opéra-
tions IQRN).

4 1l s’agissait le plus souvent de sections contigués.
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