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Un indicateur pour optimiser 
les calculs trajectographiques

■  RÉSUMÉ
Pour les systèmes dynamiques réguliers, la connaissance de la jacobienne du 
mouvement peut permettre d’estimer la divergence de trajectoire issue de deux 
points distincts, via la formule des accroissements fi nis. Elle permet ainsi de 
quantifi er l’infl uence de conditions initiales ou de paramètres incertains. Pour 
les systèmes non réguliers comme la chute de blocs rocheux, une telle écriture 
exacte n’est pas possible dans le cas général, mais on peut défi nir un indicateur 
approché appelé ici « indicateur de variation tangente de la trajectoire ». Son 
expression est obtenue à l’aide de développements infi nitésimaux au premier 
ordre du problème. Il permet ainsi d’estimer la variation de trajectoire non 
régulière pour deux points initialement proches (en conditions initiales et/ou en 
paramètres). Lors de calculs sur grille, la fi nesse de la maille (maille en conditions 
initiales, en paramètres ou en temps) peut alors être estimée, même localement. 
L’expression de cet indicateur est donnée ici dans le cas où seules les conditions 
initiales sont incertaines, puis dans celui où les paramètres le sont également. Cet 
outil est ensuite appliqué à une modélisation très simple de la chute de blocs sur 
une pente.

Use of an indicator for optimizing trajectory calculations
■  ABSTRACT
For smooth dynamic systems, knowing the Jacobian of the movement can help 
estimate the divergence of trajectories emanating from two distinct points, via 
the fi nite increment equation. This step allows quantifying the infl uence of initial 
conditions or uncertain parameters. For nonsmooth systems, e.g. rockfalls, such a 
precise quantifi cation proves impossible in the general case, yet an approximated 
indicator, herein called the "indicator of tangent variation", can still be defi ned. Its 
expression is obtained by means of infi nitesimal developments at the fi rst order 
of the problem, which yields an estimation of the non-regular trajectory variation 
for two initially-proximate points (in terms of initial conditions and/or parameters). 
During grid calculations, the level of mesh refi nement (mesh of initial conditions, 
of parameters or time) can then be estimated, even locally. The expression of 
this indicator is given in the case where just the initial conditions are uncertain, 
and then in the case where parameters are also uncertain. This tool has then 
been applied to a very simple model of rocks falling on a slope.

* AUTEUR À CONTACTER :
Claude-Henri LAMARQUE

lamarque@entpe.fr

INTRODUCTION

Les calculs de trajectoires de blocs rocheux sont réalisés à l’aide de valeurs numériques incertaines ;

ainsi, les conditions initiales en position et en vitesse du bloc ne sont pas connues précisément. 

De plus, les valeurs numériques de certains paramètres, dépendant de la modélisation ou non, sont 

aléatoires : les coeffi cients de restitution lors du rebond ou la masse par exemple.
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Pour tenir compte de ces incertitudes, des calculs sur grilles sont réalisés. C’est pour cela qu’avec 

le développement de l’informatique les outils de calcul des trajectoires de blocs rocheux se sont 

perfectionnés depuis 30 ans. Cependant tous les modèles mécaniques et les traitements numériques 

correspondants utilisent le cadre mathématique des systèmes dynamiques non réguliers [1]. Cela 

signifi e que :

–  ces modèles sont non linéaires ;

–  il y a perte de régularité mathématique pour l’expression et les solutions du problème.

Ces deux éléments ont des conséquences pour les applications où les calculs sont effectués sur des 

grilles (grille de paramètres, grille de conditions initiales) : peut-on être sûr que les indications 

données par les trajectoires (et les vitesses) issues des points de la grille sont les pires possibles ? 

En d’autres termes, n’existe-t-il pas un point intérieur aux mailles de la grille tel que, si un mur 

positionné en bas d’une pente arrête toutes les trajectoires issues des nœuds de la grille, il n’arrête 

pas celle issue de ce point-là ?

Pour les systèmes réguliers, une formule de type « accroissements fi nis » peut permettre, en esti-

mant la jacobienne (régulière) du système, d’introduire un coeffi cient de sécurité par rapport aux 

calculs sur la grille ou de dimensionner la maille de la grille pour obtenir une erreur maximale sur 

les calculs issus de n’importe quelle condition initiale.

Dans le cas des systèmes non réguliers, la jacobienne n’est plus défi nie. Il faut trouver une méthode 

alternative. Plusieurs ont été développées (voir [2] par exemple). Ces méthodes assignent alors une 

valeur au paramètre incertain : cette dernière peut être aléatoire ou varier uniformément autour 

d’une valeur moyenne. À l’aide de calculs informatiques lourds et longs, plusieurs types d’infor-

mation sont obtenues, par exemple la moyenne et l’écart-type de la longueur de la trajectoire, des 

hauteurs de bonds, du nombre de bonds, etc. Ainsi la modélisation de chute de blocs a connu de 

nombreuses améliorations [3-6], qui se heurtent toutefois à l’aléa inhérent au problème : incertitu-

des sur les géométries et les valeurs des paramètres. L’estimation de la sensibilité des modèles aux 

conditions initiales et aux paramètres constitue un raffi nement des calculs. 

On propose ici d’introduire un indicateur de la divergence tangente de trajectoires sur la grille ; il 

s’agit d’un majorant construit à partir de la notion d’exposant de Lyapunov, par exemple en suivant 

Muller [7]. Il permet deux sortes d’analyses : d’un côté, il détermine la différence de trajectoire 

après n rebonds pour deux blocs ayant des conditions initiales ou des paramètres différents mais 

proches. A contrario, cet indicateur permet également d’affi ner une grille de calcul, même locale-

ment, en fonction d’une précision de calcul ou d’un coeffi cient de sécurité souhaités.

Idéalement, on souhaiterait obtenir l’analogue d’une formule des accroissements fi nis, ce qui n’est 

pas le cas ici.

FORMULE DES ACCROISSEMENTS FINIS DANS LE CAS RÉGULIER 
ET DIVERGENCE TANGENTE DANS LE CAS IRRÉGULIER

Pour les systèmes mécaniques réguliers, la formule des accroissements fi nis s’écrit, pour 

 par exemple :

  (1)

où  est la jacobienne de f évaluée au point , h un incrément (la taille de la 

maille par exemple).
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Si on sait borner  pour l’ensemble des X
0
  considérés, il est alors possible, pour une 

maille h considérée, de déterminer l’erreur réalisée . Réciproquement, en se 

fi xant une valeur limite de l’erreur, la maille maximale à utiliser peut être déterminée afi n que l’er-

reur réalisée ne lui soit pas supérieure.

Ce genre de calculs a donc deux buts :

–  déterminer l’erreur d’approximation en fonction de la taille de la maille ;

–  déterminer la taille de la maille en fonction de l’erreur maximale fi xée et « sécuriser » les calculs 

du modèle.

Pour les systèmes mécaniques non réguliers, on ne dispose pas d’une estimation aussi commode. 

On propose de la remplacer par un indicateur ayant un sens proche. Par défi nition, le plus grand 

exposant de Lyapunov [8, 9] peut servir de base à la construction d’un tel indicateur :

  (2)

Pour une équation différentielle linéaire du type , la solution s’écrit 

 et cet exposant correspond à la plus grande valeur propre de A qui régit à la fois 

l’écart entre deux trajectoires initialement proches et l’infl uence des paramètres de A sur cet écart.

En théorie, il mesure la divergence tangente à l’infi ni en temps de deux trajectoires infi niment 

proches en conditions initiales. En pratique, il mesure cela à un horizon fi ni. Alors, à tout instant 

t > 0 :

  (3)

En fait, on propose simplement dans un premier temps de majorer , c’est-à-dire de majorer 

la norme de l’opérateur tangent. Pour cela, on calcule un indicateur (une norme de l’indicateur tan-

gent généralisé) qui permet de quantifi er la variation locale tangente infi nitésimale (par rapport à des 

conditions initiales et/ou des paramètres). En pratique, pour une maille de grille petite, on conjecture 

que cette quantifi cation peut jouer un rôle similaire à celui d’une formule d’accroissements fi nis en 

améliorant la confi ance que l’on fait aux calculs sur la grille. Ceci permet d’estimer la différence de 

trajectoire à un instant t de deux points initialement proches (en conditions initiales ou en temps). Ainsi,

en connaissant la divergence initiale (en position, vitesse ou paramètres), il est possible d’estimer 

cette même divergence à l’instant t. De même, en fi xant cette dernière inférieure à une certaine valeur 

à l’instant t, il est possible d’estimer la divergence initiale maximale et donc la maille de la grille.

Une pseudo-jacobienne pour ces systèmes non réguliers est ainsi introduite, en utilisant des matrices

de passage et de saut à chaque évènement non régulier des trajectoires. Le concept de matrices 

de saut et de passage est d’abord présenté. On étudie ensuite un modèle très simple de chutes de 

blocs ponctuels le long d’une pente, pour montrer le profi t pour les applications de cet indicateur, 

et illustrer le type de travail à effectuer pour l’adapter à des modèles plus complexes utilisés dans 

les applications.

EXPRESSION DE LA PSEUDO-JACOBIENNE ET DE L’INDICATEUR

Il existe divers formalismes pour modéliser les systèmes mécaniques non réguliers : on peut citer 

les inclusions différentielles, le formalisme d’Ivanov [10], les formulations de J.-J. Moreau [11], 
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utilisés pour divers logiciels (LMGC90), les travaux de M. Frémond et É. Dimnet [12, 13]. Pour le 

traitement mathématique de ces systèmes, le lecteur est renvoyé par exemple aux travaux de L. Paoli 

(impacts, [14]), J. Bastien (friction en déterministe, [15]), F. Bernardin (friction en stochastique, 

[16]) pour les inclusions et à l’ouvrage de Brogliato [1] pour un aperçu général synthétique.

Dans cet article, le formalisme du problème est aussi élémentaire que possible et la modélisation 

utilise la loi de restitution de Newton. Le comportement d’un système mécanique non régulier peut 

alors se décomposer en deux parties : celle où le comportement est analogue à celui d’un système 

mécanique régulier, donc régi par une équation différentielle, et celle où se produit la discontinuité, 

localisée en temps.

Dans le cas considéré, on modélise ceci par les relations :

  (4)

X représente les paramètres d’espace (position, vitesse), les paramètres sont notés µ et t est le 

temps. t
0
 est alors l’instant initial, t

1
 celui de la première discontinuité, t

2
 celui de la deuxième (si 

elle a lieu) ; h(X, t, µ) est appelée fonction indicatrice de la discontinuité, g(X, t, µ) est la fonction 

de passage ; f
1
 et f

2
 sont les fonctions décrivant le comportement du système respectivement entre 

t
0
 et t

1
 et entre t

1
 et t

2
, ce qui correspond par exemple au cas de la friction. Dans les exemples traités 

plus loin, on se restreint au cas :

 .

Si on considère des conditions initiales et des paramètres légèrement perturbés :

  (5)

l’instant de la discontinuité sera aussi perturbé :

  (6)

 est l’instant de la discontinuité de la trajectoire perturbée.

En supposant que le comportement du système, dont les conditions initiales et les paramètres ont 

été modifi és, est structurellement le même que celui du système original (hypothèse légitime ici 

puisque les variations sont supposées très faibles lors de calculs sur grille), on obtient le comporte-

ment de δX, tous les calculs étant explicités dans l’annexe A.

Avant la première discontinuité, donc pour 

  (7)

avec :

  (8)
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Lors de la discontinuité pour t = t
1
, la divergence de trajectoire subit un saut :

  (9)

avec :

  (10)

est la divergence après la discontinuité,  est celle d’avant le saut.

Après la discontinuité (t > t
1
), on a à nouveau :

  (11)

avec :

  (12)

Dans ce qui suit, on considère  ; cela est suffi sant pour les appli-

cations qui en sont faites. Le comportement de la divergence infi nitésimale est donc différent selon 

la phase de trajectoire considérée. En particulier, lors d’une phase de chute libre, la divergence infi -

nitésimale de comportement régulier du système mécanique entre une discontinuité i et la suivante 

(i + 1) peut être modélisée simplement par :

  (13)

Ainsi, en intégrant entre  et , on peut écrire :

  (14)

J
i
 est appelée matrice de passage.

Pourtant, pour étudier le comportement de cette divergence lors d’une discontinuité, plusieurs cas 

peuvent être distingués selon que  ou non.

■  Cas où δt0 = 0 et δµ0 = 0

On se restreint dans cette partie au cas où δµ
0
 = 0 et δt

0
 = 0 (la valeur numérique des paramètres est 

fi xe et connue, ainsi que l’origine des temps). Seules les conditions initiales en espace sont suppo-

sées aléatoires. Dans ce cas, il existe une matrice de saut explicite permettant le passage entre  

et .
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Cette matrice s’écrit :

 

avec :

  (15)

S
i
 est appelée matrice de saut pour la discontinuité i.

La pseudo-jacobienne du mouvement peut alors être évaluée suivant une formule du type :

  (16)

où N est le nombre de discontinuités par période (qui peut être infi nie).

Le but est alors de borner commodément la norme de J, et de la retenir comme indicateur de « diver-

gence » sur la grille.

L’estimateur lié à la pseudo-jacobienne peut être défi ni comme suit. Soit un système mécanique non 

régulier :

  (17)

n est alors le nombre de variables d’espace, s est le nombre de paramètres.

Soit  la pseudo-jacobienne du mouvement, , , .

Alors :

a)  Si N est fi ni :

L’estimateur proposé est donné par :

 

 

=

 

 (18)

b)  Si N est infi ni :

Si  ou si  :

L’estimateur retenu est .

Remarque :

–  On ne donne qu’une borne commode à calculer en n’étudiant que les évènements pris séparé-

ment. Par exemple, si le nombre de discontinuités est infi ni et que les normes des matrices de saut 

et de passage et des jacobiennes ne sont pas toutes inférieures à 1, il faudrait procéder différemment 

pour espérer avoir un indicateur meilleur. Ainsi, l’indicateur proposé ne débouche pas exactement 

sur le calcul d’un exposant de Lyapunov, mais sur une borne plus commode à obtenir.

–  Le cas 1 est illustré ci-dessous par le paragraphe sur l’impact de blocs ponctuels sur une 

pente.
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■  Cas où δt0 ≠ 0 ou δµ0 ≠ 0

Si on n’a pas δt
0
 = 0 et δµ = 0, la matrice de saut ne peut plus être explicitée aussi simplement. Les 

développements théoriques sont exposés dans l’annexe B. On peut néanmoins défi nir un estimateur 

dans le cas des conditions initiales (espace et temps) et des paramètres aléatoires comme suit. Soit 

un système mécanique non régulier :

  (19)

n est alors le nombre de variables d’espace, s est le nombre de paramètres.

Soit  et S
1
 tel que : .

Soit  et S
2
 tel que : .

Soit R tel que : .

L’indicateur retenu est alors :

  (20)

Les constantes A, B, C et D sont défi nies dans l’annexe B.

Remarque :

Ici, comme auparavant, ceci est une borne pour l’estimation de la divergence de trajectoire. En 

effet, la condition (58), donnée en annexe, est très restrictive. Si elle est trop grossière, il peut être 

nécessaire de réaliser la majoration à l’aide de la formule générale (56) obtenue par récurrence. 

L’utilisation de cet indicateur χ est alors très simple. En effet, . Donc, la connaissance de 

χ permet bien sûr de borner  en fonction de , mais il est également possible de déter-

miner  pour que  soit inférieure à une valeur limite.

L’indicateur de divergence tangente est maintenant appliqué au problème de la chute de blocs ponc-

tuels sur une pente, en utilisant une modélisation très simple.

CHUTE D’UN BLOC SUR UNE PENTE D’ANGLE CONSTANT

■  Modélisation du problème

La modélisation utilisée ici pour le problème physique est très simple : le bloc est considéré comme 

un point ponctuel de masse m. Par conséquent, on ne tient pas compte des phénomènes de rotation 

et de glissement.

La fi gure 1 montre la modélisation utilisée du problème.

L’angle de la pente est noté θ, alors que la longueur de celui-ci est L. α et β sont les coeffi cients de 

restitution normal et tangentiel.
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On pose : . Donc l’équation du mouvement est :

  (21)

On utilise les deux constantes de restitution suivantes :

  (22)

Les valeurs des constantes α et β peuvent être prises en adéquation avec des valeurs physiques 

utilisées pour des calculs de trajectoires de blocs de pierre sur pente. Elles peuvent dépendre par 

exemple de la pente, de la nature du sol et de la nature du bloc en chute.

Les fonctions indicatrice et de passage sont :

 ,

et

  (23)

Remarque :

Dans ce cas où les équations du mouvement, les fonctions indicatrice et de passage sont polynômiales

par rapport aux variables X, t et µ, il est possible d’exprimer une réelle jacobienne du mouvement 

car les développements utilisés sont alors exacts. On aurait :

 

Pourtant, on se borne ici à estimer l’indicateur tel qu’il a été présenté dans les sections 

précédentes.

Une trajectoire typique, obtenue avec cette modélisation, est représentée sur la fi gure 2.

fi gure 1
Modélisation du problème 

de la chute de blocs 
le long d’une pente.
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On suppose que, dans une démarche d’ingénieur, les plages de variation des conditions initiales 

et des paramètres sont déterminées. Le cas où seules les conditions initiales sont incertaines va 

d’abord être étudié, avant d’élargir l’étude au cas où les paramètres sont également inconnus.

■  Cas où δt0 = 0 et δµ0 = 0

Dans ce cas, en appliquant les résultats du paragraphe précédent :

  

(24)

  

  (25)

fi gure 2
Trajectoire déterministe 
d’un bloc de pierre sur 

une pente et obtenue avec 
la modélisation présentée 

(   

 

  

).
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On en déduit la matrice de passage :

  (26)

où : .

La matrice de saut s’écrit :

  (27)

Le cas où δt devient infi ni n’est pas pénalisant.

En effet, δt devient infi ni lorsque :

  (28)

Alors avec la loi de restitution qui a été choisie, il faut exclure le cas :

  (29)

En effet, si ce cas est exclu, c’est-à-dire si  ou , même en itérant il ne pourra jamais y 

avoir . L’ensemble  est entièrement compris dans l’en-

semble .

De plus, le cas d’une infi nité d’impacts (dans lequel, même si ,  est impossible 

ici avec la modélisation qui a été utilisée, si L est fi ni et la pente assez conséquente (supérieure à 

45 degrés).

On utilise la norme subordonnée :

  (30)

car commode pour les calculs (il convient toutefois de s’en méfi er pour l’interprétation géométrique).

On obtient immédiatement pour la matrice de passage :

  (31)

où T représente la « période » du mouvement, donc ici l’horizon en temps. En ce qui concerne la 

matrice de saut, le calcul est moins évident. Tout d’abord, plusieurs hypothèses sont faites :  

(il n’y a pas de poinçonnement) et  (la restitution tangentielle est plus importante que la 

restitution normale). De plus, on appelle N
1
 le nombre maximal de sauts réalisés par le bloc. La 

norme infi nie de la matrice de saut peut alors être majorée indépendamment de i (pour le détail des 

calculs, voir l’annexe D) :
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Si  :

  (32)

Si  :

  (33)

Sachant que N
1
 est fi ni, ainsi que les deux normes  et , il est possible de majorer 

la norme  de la pseudo-jacobienne. En effet, en notant  et , on a alors :

  (34)

Remarque :

–  La formule (66) de majoration du nombre d’impacts (voir annexe C) peut parfois se révéler être 

trop grossière. Il suffi t alors de calculer la distance des différents bonds successifs et d’en déduire 

le nombre effectué. Le nombre d’impacts est ainsi obtenu très facilement.

–  Cette même formule dépend de conditions initiales et de paramètres qui peuvent être imprécis. 

Il s’agit alors de choisir les valeurs numériques les plus contraignantes pour calculer le nombre 

maximum d’impacts.

Alors, pour a et b deux points voisins de la grille des conditions initiales en espace, leur divergence 

de trajectoire en fi n de pente pourra être évaluée par une formule du type :

 

La fi nesse de la maille peut ainsi être évaluée facilement (suffi sante ou non, selon la précision 

souhaitée).

■  Cas où δt0 ≠ 0 ou δµ0 ≠ 0

Le problème est modélisé comme auparavant, mais on choisit ici le vecteur de paramètres imprécis 

égal à : .
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Alors :

 

  (35)

 

On obtient de ceci les relations de passage de  à  et de  à  : 

  (36)

■  Majoration de la divergence de trajectoire en fonction 
des divers paramètres du système

Pour cela, on majore le système d’équations (36) où les conditions initiales et les paramètres 

sont supposés aléatoires. En effet, il est ensuite aisé de retrouver le cas plus simple décrit dans le 

paragraphe « Cas où δt
0
 = 0 et δµ

0
 = 0 ». Les développements analytiques ont été reportés dans 

l’annexe D.

On calcule une norme subordonnée pour les matrices intervenant dans les relations de passage.

Comme auparavant, on adopte .

Les conditions initiales sont supposées bornées : par exemple, que , ,

, ,  et .

On a alors logiquement  et .

De même, d’après leur défi nition,  et , donc : ,  et , .

Mais on suppose également pour la simplicité des calculs  et .
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Lors d’un seul impact, la précision de la maille à utiliser pourra être déduite de :

  (37)

De plus, pour n impacts :

 

Donc :

Si  :

 

Si  :

 

Les constantes E
1
, E, F

1
, F et G sont défi nies dans l’annexe D.

APPLICATION ET UTILISATION DE L’INDICATEUR

On a donné l’expression de la pseudo-jacobienne. Ceci permet d’estimer la fi nesse des calculs sur 

grille nécessaire pour obtenir une certaine précision ε en considérant comme valide l’approxima-

tion :  où . La maille à utiliser pour obtenir une erreur 

inférieure à une certaine valeur (faible) peut donc être calculée simplement et rapidement.

Ainsi, si un calcul sur grille préconise un ouvrage de protection de hauteur h
max

, la divergence de 

trajectoire entre deux points de la grille peut être calculée. On aura :

 

Il est alors possible de raffi ner cette grille pour que, pour ε donné, pour tout point, on ait 

(cf. fi gure 3) :

 

Pour ceci, on suppose que les calculs numériques sur grille ont été réalisés avec un grand nombre 

de points sur la grille.

fi gure 3
Problématique de 

la protection de personnes 
et de biens à l’aide 

d’un dispositif passif.
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On utilise la formule (66) qui donne le nombre maximal d’impacts (voir annexe C), et on compare 

alors ces résultats à ceux obtenus numériquement.

Pour cela, on considère par exemple les valeurs numériques suivantes : , , 

, , , , , , 

, , , , . Alors  (d’après la formule 

(66)).

On calcule les majorations des indicateurs de ,  et  (formule (37)), pour dif-

férentes valeurs de la maille (0, 0,1 et 0,01), pour la majoration indépendante de i (formule (88), 

annexe D) et celle dépendant de i (voir formules (81-86) dans l’annexe D). En particulier, on appelle 

M
j
 (j étant égal à 1, 2 ou 3) la majoration de l’estimation de  indépendante de i et M

ji 
cette 

même majoration mais dépendante de i. Les résultats sont les suivants (tableau 1) :

M1 M1i M2 M2i M3 M3i

0,01 0,01 1,1 0,4 329 11,1 98 185 850

0,1 0,1 11 4 3 288 111 981 841 8 495

0,1 0 2,2 2,2 635 59 189 441 4 511

0,01 0 0,22 0,22 63,5 5,9 18 945 451,1

0 0,1 8,9 1,84 2 653 51,8 792 401 3 983

0 0,01 0,89 0,184 265,3 5,18 79 240,1 398,34

Remarque :

–  on observe une relative proportionnalité des erreurs réalisées par rapport aux mailles  et 

. Ceci est conforme aux résultats trouvés précédemment ;

–  la majoration introduite par la formule (88) est grossière. En effet, elle est indépendante du saut 

considéré, contrairement à la majoration fonction du numéro du saut ;

–  avec la majoration indépendante de i, le caractère aléatoire des paramètres a des conséquences 

plus importantes que celui des conditions initiales : pour une variation égale des paramètres et des 

conditions initiales, la jacobienne varie plus pour la variation de paramètres ;

–  cela n’est plus le cas si on considère la majoration plus fi ne, dépendante de i. Dans ce cas, une 

variation des conditions initiales et une variation des paramètres de même amplitude ont pratique-

ment le même effet ;

–  ces majorations (88) sont grossières. Si on désire des améliorations, il est alors possible de normer 

ces matrices en fonction du saut considéré et non plus en fonction du nombre maximal N
1
 de sauts.

ADAPTATION POTENTIELLE DE L’INDICATEUR

Les valeurs numériques de l’estimateur du tableau 1 sont grandes. En effet, à chaque discontinuité, 

on a majoré les matrices de saut et de passage en prenant en compte tout l’espace des conditions 

initiales et des paramètres possibles. De plus, cette majoration a été réalisée sur un intervalle de 

temps relativement long, du début de la trajectoire jusqu’à sa fi n.

Dans un cas comme celui-ci, l’utilisation de l’indicateur proposé est alors la suivante : si sa valeur 

est estimée trop élevée, localement ou globalement, il convient de raffi ner la grille.

Au lieu de considérer un indicateur « global » en temps comme cela a été fait jusqu’ici (associé à 

un exposant de Lyapunov,  qui étudie une dynamique sur un temps long), on peut aussi envi-

tableau 1
Majoration de la 

divergence de trajectoire 
après le saut j (j = 1, 2 

ou 3), pour une différence 
de conditions initiales et 

de paramètres donnée.
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sager d’utiliser une méthode similaire localement en temps pour  intervalle de temps donné, 

 :

  (38)

en bornant alors  seulement.

Pour n = p + 1, on retrouve un exposant moyen. En particulier, avec les valeurs données par le 

tableau 1, il est visible qu’il est commode d’adapter la grille de calculs et/ou de déterminer un 

coeffi cient de sécurité d’un impact du bloc au suivant. En effet, les constantes M
1
 et M

ii
 ne sont pas 

élevées, car locales. Ceci permet de mesurer la divergence entre un instant et l’autre et donc de dis-

tinguer les parties de la trajectoire qui posent problème. Le raffi nement de la grille s’effectue alors 

localement, comme dans le cas d’équations différentielles où l’on adapte le pas de temps. On adapte 

(éventuellement automatiquement) la maille de la grille localement en fonction de l’indicateur.

CONCLUSION

Le but de cet article était d’estimer un indicateur de la divergence tangente de trajectoire, d’exa-

miner la faisabilité des calculs et de trouver un outil pour tenter de contrôler les sensibilités aux 

conditions initiales et/ou aux paramètres induites par les systèmes non réguliers. Cet indicateur 

devait pouvoir être estimé commodément sur un continuum de conditions initiales ou de paramètres 

et pas seulement sur une grille, ce qui est le cas avec la démarche proposée qui permet de traiter 

séparément chaque événement non régulier et de majorer sa contribution, même si la borne peut 

être très grossière.

Pour ceci, on a d’abord défi ni en toute généralité les matrices de saut et de passage pour ces systèmes.

Ensuite, on a étudié le problème de chutes de blocs sur une pente. Dans ce cas, on a pu majorer la 

pseudo-jacobienne, ce qui permet d’estimer le caractère adéquat ou non de la maille utilisée.

Enfi n, on a proposé des pistes d’amélioration du calcul de cet indicateur, permettant une gestion 

plus fi ne des mailles de grille.

Cette méthode peut a priori être appliquée à toute modélisation de la chute de blocs ou par 

exemple :

–  le bloc de pierre est souvent modélisé par un ellipsoïde ou une boule [2]. En particulier, il peut 

présenter un mouvement de rotation qui n’a pas été pris en compte ici. Le vecteur position aura alors 

deux composantes supplémentaires : la rotation et le taux de rotation ;

–  de plus, il a été considéré ici que le mouvement se décompose en deux phases distinctes : la chute 

libre et l’impact, alors qu’un bloc peut présenter des mouvements de roulement et de glissement. 

Ces derniers sont d’ailleurs ceux qui posent le plus de problèmes. En effet, on a alors : , 

la formule (44) n’est plus valable [17]. Pour résoudre cette diffi culté, on peut changer de modélisa-

tion (considérer ces cas comme des mini-rebonds, [4]) ou de formalisme [11].

Il faudrait en examiner la faisabilité pour d’autres modélisations, en observant que la perte d’optima-

lité introduite par les inégalités est compensée par le traitement séparé des évènements irréguliers.
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ANNEXE A
DÉVELOPPEMENT THÉORIQUE DE L’ÉVOLUTION 
DE LA DIVERGENCE DE TRAJECTOIRE

 

 

si on suppose :

  (39)

alors, simplement :

 

avec :

  (40)

À l’instant t = t
1
, en notant : , et en cherchant , sous la 

contrainte  et avec :

  (41)

on obtient alors avec un développement de Taylor au premier ordre :

  (42)

avec plus explicitement :

  (43)
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Supposons que  est inversible. Cela signifi e que 

la trajectoire perturbée, c’est-à-dire celle dont les conditions initiales en espace et en temps et les 

paramètres ont été perturbés, présente le même type de comportement que la trajectoire initiale. 

Alors, l’intervalle de temps entre les instants de discontinuité de la trajectoire non perturbée et celle 

perturbée sera :

  (44)

La différence des deux trajectoires après l’impact vaudra :

 

avec :

  (45)

et :

  (46)

Donc, en utilisant l’approximation (45) :

  (47)

Finalement dans le dernier cas t > t
1
, on a :

  (48)

avec :

  (49)
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ANNEXE B 
DÉTERMINATION DES RELATIONS DE PASSAGE POUR δT ≠ 0 
OU δΜ ≠ 0

Dans ce cas, il faut réécrire les expressions précédentes de la manière suivante :

  (50)

avec :

  (51)

On obtient alors :

  (52)

Remarque : si on pose δt
0
 = 0 et δµ

0
 = 0, cette équation  (52) s’écrit bien sous la forme de la for-

mule (15) :

  (53)

On réécrit alors le problème de la façon suivante :

  (54)

  (55)

Par récurrence, la divergence de trajectoire après le saut i peut être exprimée en fonction de la diver-

gence de conditions initiales  :

  (56)

Il est à remarquer que cette équation (56) fait intervenir les variables S
1i
, S

2i
 et J

i
, qui sont fonction 

des divergences en temps δt
0
 et en paramètre δµ

0
.

En particulier, si on peut écrire :

  (57)

où R, S
1
 et S

2
 sont des constantes indépendantes de i, l’équation (56) peut se majorer :

  (58)

Si 

Si 
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ANNEXE C
DISTANCE ENTRE DEUX IMPACTS

Pour calculer le nombre d’impacts, il faut déterminer N qui est le premier entier tel que :

  (59)

Pour cela, il convient d’estimer les x
i
, , y

i
 et .

Les équations du mouvement sont :

  (60)

Il y a impact lorsque y = 0, ainsi l’intervalle de temps entre deux impacts est égal à :

  (61)

Les vitesses lors des impacts sont donc :

  (62)

Par récurrence, on obtient alors :

  (63)



123BLPC • n°263-264 • juil/août/sept 2006

On note :

  (64)

On calcule ainsi la distance entre deux impacts :

  (65)

N est le premier entier tel que :

 

En particulier, on peut écrire :

 

Donc :

  (66)

2



124 BLPC • n°263-264 • juil/août/sept 2006

ANNEXE D
MAJORATION DES NORMES DES MATRICES DE SAUT 
ET DE PASSAGE

Les vitesses avant impacts  et doivent être estimées. Ceci est réalisé par récurrence ;

les résultats sont donnés par la formule (63).

On utilise les notations suivantes :

  (67)

  (68)

  

(69)

On calcule une norme subordonnée pour ces matrices.

Comme auparavant, on utilise  :

 , (70)

  (71)

  (72)

De même :

  (73)
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donc si i = 1 :

  (74)

et si i > 1 :

  

(75)

On a : . Par suite, il vient :

Si i = 1  (76)

  (77)

Si i > 1  (78)

  (79)

Si on suppose que les conditions initiales sont bornées : par exemple, supposons que ,

, , , ¸ .

On a alors logiquement  et .

De même, d’après leur défi nition,  et , donc on a : ,  et , .

Mais on suppose également pour la simplicité des calculs  et .
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Par ailleurs, on note :

  (80)

On obtient les majorations suivantes :

  (81)

  (82)

De même :

  (83)

  

(84)

Enfi n :

  (85)

  (86)

,
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Le nombre maximal d’impacts est connu par la formule (66), qui fait intervenir des paramètres 

incertains (Y, Z, β). Ainsi, avec les intervalles de variation des paramètres et des conditions initiales 

qui ont été introduits ci-dessus, on peut écrire :

  (87)

Finalement, si on suppose encore que  et , on obtient les majorations suivantes :

  (88)


	Un indicateur pour optimiser



