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RESUME
Pour les systémes dynamiques réguliers, la connaissance de la jacobienne du
mouvement peut permettre d’estimer la divergence de trajectoire issue de deux
points distincts, via la formule des accroissements finis. Elle permet ainsi de
quantifier I'influence de conditions initiales ou de paramétres incertains. Pour
les systemes non réguliers comme la chute de blocs rocheux, une telle écriture
exacte n'est pas possible dans le cas général, mais on peut définir un indicateur
approché appelé ici « indicateur de variation tangente de la trajectoire ». Son
expression est obtenue a I'aide de développements infinitésimaux au premier
ordre du probleme. Il permet ainsi d’estimer la variation de trajectoire non
réguliere pour deux points initialement proches (en conditions initiales et/ou en
parameétres). Lors de calculs sur grille, la finesse de la maille (maille en conditions
initiales, en parameétres ou en temps) peut alors étre estimée, méme localement.
L'expression de cet indicateur est donnée ici dans le cas ou seules les conditions
initiales sont incertaines, puis dans celui ou les parametres le sont également. Cet
outil est ensuite appliqué a une modélisation tres simple de la chute de blocs sur
une pente.

Use of an indicator for optimizing trajectory calculations
ABSTRACT
For smooth dynamic systems, knowing the Jacobian of the movement can help
estimate the divergence of trajectories emanating from two distinct points, via
the finite increment equation. This step allows quantifying the influence of initial
conditions or uncertain parameters. For nonsmooth systems, e.g. rockfalls, such a
precise quantification proves impossible in the general case, yet an approximated
indicator, herein called the "indicator of tangent variation", can still be defined. Its
expression is obtained by means of infinitesimal developments at the first order
of the problem, which yields an estimation of the non-regular trajectory variation
for two initially-proximate points (in terms of initial conditions and/or parameters).
During grid calculations, the level of mesh refinement (mesh of initial conditions,
of parameters or time) can then be estimated, even locally. The expression of
* AUTEUR A CONTACTER this indicator is given in the case where just the initial conditions are uncertain,
Claude-Henri LAMARQUE  and then in the case where parameters are also uncertain. This tool has then
lamarque@entpe.fr ~ been applied to a very simple model of rocks falling on a slope.

INTRODUCTION

Les calculs de trajectoires de blocs rocheux sont réalisés a 1’aide de valeurs numériques incertaines ;
ainsi, les conditions initiales en position et en vitesse du bloc ne sont pas connues précisément.
De plus, les valeurs numériques de certains parameétres, dépendant de la modélisation ou non, sont
aléatoires : les coefficients de restitution lors du rebond ou la masse par exemple.
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Pour tenir compte de ces incertitudes, des calculs sur grilles sont réalisés. C’est pour cela qu’avec
le développement de I’informatique les outils de calcul des trajectoires de blocs rocheux se sont
perfectionnés depuis 30 ans. Cependant tous les modeles mécaniques et les traitements numériques
correspondants utilisent le cadre mathématique des systemes dynamiques non réguliers [1]. Cela

signifie que :

— ces modeles sont non linéaires ;

— il y a perte de régularité mathématique pour 1’expression et les solutions du probléme.

Ces deux éléments ont des conséquences pour les applications ou les calculs sont effectués sur des
grilles (grille de paramétres, grille de conditions initiales) : peut-on étre slir que les indications
données par les trajectoires (et les vitesses) issues des points de la grille sont les pires possibles ?
En d’autres termes, n’existe-t-il pas un point intérieur aux mailles de la grille tel que, si un mur
positionné en bas d’une pente arréte toutes les trajectoires issues des nceuds de la grille, il n’arréte
pas celle issue de ce point-1a ?

Pour les systémes réguliers, une formule de type « accroissements finis » peut permettre, en esti-
mant la jacobienne (régulicre) du systéme, d’introduire un coefficient de sécurité par rapport aux
calculs sur la grille ou de dimensionner la maille de la grille pour obtenir une erreur maximale sur
les calculs issus de n’importe quelle condition initiale.

Dans le cas des systémes non réguliers, la jacobienne n’est plus définie. Il faut trouver une méthode
alternative. Plusiceurs ont été développées (voir [2] par exemple). Ces méthodes assignent alors une
valeur au paramétre incertain : cette derniére peut étre aléatoire ou varier uniformément autour
d’une valeur moyenne. A 1’aide de calculs informatiques lourds et longs, plusieurs types d’infor-
mation sont obtenues, par exemple la moyenne et I’écart-type de la longueur de la trajectoire, des
hauteurs de bonds, du nombre de bonds, etc. Ainsi la modélisation de chute de blocs a connu de
nombreuses améliorations [3-6], qui se heurtent toutefois a 1’aléa inhérent au probléme : incertitu-
des sur les géométries et les valeurs des parameétres. Lestimation de la sensibilité des modeles aux

conditions initiales et aux parametres constitue un raffinement des calculs.

On propose ici d’introduire un indicateur de la divergence tangente de trajectoires sur la grille ; il
s’agit d’un majorant construit a partir de la notion d’exposant de Lyapunov, par exemple en suivant
Muller [7]. Il permet deux sortes d’analyses : d’un coté, il détermine la différence de trajectoire
apres n rebonds pour deux blocs ayant des conditions initiales ou des parameétres différents mais
proches. A contrario, cet indicateur permet également d’affiner une grille de calcul, méme locale-
ment, en fonction d’une précision de calcul ou d’un coefficient de sécurité souhaités.

Idéalement, on souhaiterait obtenir 1’analogue d’une formule des accroissements finis, ce qui n’est
pas le cas ici.

FORMULE DES ACCROISSEMENTS FINIS DANS LE CAS REGULIER
ET DIVERGENCE TANGENTE DANS LE CAS IRREGULIER

Pour les systéemes mécaniques réguliers, la formule des accroissements finis s’écrit, pour

fec! (R“,Rn) par exemple :

of

VX, eR", vheR", E(XO)

f(Xo+h)—f(Xo)|< |h

, @)

f . . . . .
ou %(Xo) est la jacobienne de f évaluée au point X, € R", h un incrément (la taille de la
0

maille par exemple).
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Si on sait borner i(xo)
X,

pour I’ensemble des X considérés, il est alors possible, pour une

maille h considérée, de déterminer I’erreur réalisée ”f (Xo+h)-f (X )H . Réciproquement, en se

fixant une valeur limite de I’erreur, la maille maximale a utiliser peut étre déterminée afin que 1’er-
reur réalisée ne lui soit pas supérieure.

Ce genre de calculs a donc deux buts :

— déterminer I’erreur d’approximation en fonction de la taille de la maille ;
— déterminer la taille de la maille en fonction de 1’erreur maximale fixée et « sécuriser » les calculs
du modele.

Pour les systemes mécaniques non réguliers, on ne dispose pas d’une estimation aussi commode.
On propose de la remplacer par un indicateur ayant un sens proche. Par définition, le plus grand
exposant de Lyapunov [8, 9] peut servir de base a la construction d’un tel indicateur :

_ ox(t
A = lim sup ! In ” ( )H )
tsm L ||8X0||
Xty = AX(),t>0
Pour une équation différentielle linéaire du type , la solution s’écrit
X(0) = X,e®R)"

X(t) = eth X et cet exposant correspond a la plus grande valeur propre de A qui régit a la fois

I’écart entre deux trajectoires initialement proches et I’influence des paramétres de A sur cet écart.

En théorie, il mesure la divergence tangente a I’infini en temps de deux trajectoires infiniment
proches en conditions initiales. En pratique, il mesure cela a un horizon fini. Alors, a tout instant
t>0:

_ 8
()= L lXOL ®
t [oxol
8
En fait, on propose simplement dans un premier temps de majorer H”;( (t|)H , ¢’est-a-dire de majorer
X0

la norme de I’opérateur tangent. Pour cela, on calcule un indicateur (une norme de I’indicateur tan-
gent généralisé) qui permet de quantifier la variation locale tangente infinitésimale (par rapport a des
conditions initiales et/ou des paramétres). En pratique, pour une maille de grille petite, on conjecture
que cette quantification peut jouer un réle similaire a celui d’une formule d’accroissements finis en
améliorant la confiance que I’on fait aux calculs sur la grille. Ceci permet d’estimer la différence de
trajectoire a un instant t de deux points initialement proches (en conditions initiales ou en temps). Ainsi,
en connaissant la divergence initiale (en position, vitesse ou parametres), il est possible d’estimer
cette méme divergence a I’instant t. De méme, en fixant cette derniere inférieure a une certaine valeur
a I’instant t, il est possible d’estimer la divergence initiale maximale et donc la maille de la grille.

Une pseudo-jacobienne pour ces systémes non réguliers est ainsi introduite, en utilisant des matrices
de passage et de saut a chaque évenement non régulier des trajectoires. Le concept de matrices
de saut et de passage est d’abord présenté. On étudie ensuite un modele trés simple de chutes de
blocs ponctuels le long d’une pente, pour montrer le profit pour les applications de cet indicateur,
et illustrer le type de travail a effectuer pour I’adapter a des modeles plus complexes utilisés dans
les applications.

EXPRESSION DE LA PSEUDO-JACOBIENNE ET DE L’'INDICATEUR

Il existe divers formalismes pour modéliser les systemes mécaniques non réguliers : on peut citer
les inclusions différentielles, le formalisme d’Ivanov [10], les formulations de J.-J. Moreau [11],

BLPC *n°263-264 «juil/ao(t/sept 2006 m



utilisés pour divers logiciels (LMGC90), les travaux de M. Frémond et E. Dimnet [12, 13]. Pour le
traitement mathématique de ces systémes, le lecteur est renvoyé par exemple aux travaux de L. Paoli
(impacts, [14]), J. Bastien (friction en déterministe, [15]), F. Bernardin (friction en stochastique,
[16]) pour les inclusions et a I’ouvrage de Brogliato [1] pour un apergu général synthétique.

Dans cet article, le formalisme du probléme est aussi élémentaire que possible et la modélisation
utilise la loi de restitution de Newton. Le comportement d’un systéme mécanique non régulier peut
alors se décomposer en deux parties : celle ou le comportement est analogue a celui d’un systéme
mécanique régulier, donc régi par une équation différentielle, et celle ou se produit la discontinuité,
localisée en temps.

Dans le cas considéré, on modélise ceci par les relations :

,X(to):XO,f] ECI,

(to<)t<t;: X=f(X,t,n)
0 p),tl,u),hecl,

t= tl .
4)

t<t<ty: X:fz(x,t,p),x(tl)=x(t{),f2 eCl.

X représente les paramétres d’espace (position, vitesse), les paramétres sont notés p et t est le
temps. t, est alors I’instant initial, t, celui de la premiére discontinuité, t, celui de la deuxieme (si
elle a lieu) ; h(X, t, p) est appelée fonction indicatrice de la discontinuité, g(X, t, ) est la fonction
de passage ; f, et f, sont les fonctions décrivant le comportement du systéme respectivement entre
t, ett, etentre t, et t,, ce qui correspond par exemple au cas de la friction. Dans les exemples traités
plus loin, on se restreint au cas :

f] (X,t,u) =1, (X,t,p) = f(X,t,u) .
Si on considere des conditions initiales et des paramétres légeérement perturbés :

)_((to) = XO +6X0,

_ ®)
i(to) = Ho+duo,
I’instant de la discontinuité sera aussi perturbé :
G =t +8t. (6)

t1 est 'instant de la discontinuité de la trajectoire perturbée.

En supposant que le comportement du systeme, dont les conditions initiales et les paramétres ont
été modifiés, est structurellement le méme que celui du systéme original (hypothése égitime ici
puisque les variations sont supposées tres faibles lors de calculs sur grille), on obtient le comporte-
ment de dX, tous les calculs étant explicités dans 1’annexe A.

Avant la premiére discontinuité, donc pour (ty <)t <t;:

8X = Fix (X, t,1) X + By (X, t,1).8t0 + B, (X, t, 1) 3y, @)
avee |
of,
Fix (X, t.p)= T 1Kt
of,
R (% 61) =g ®
of,

R (Xtp)= PR
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Lors de la discontinuité pour t =t , la divergence de trajectoire subit un saut :
8Xf =Gy (Xl_,tl, p).sxl‘
n [GX (X7t £ (X7 t1o10) + G (X7 t11) = B2 (xr,tl,uﬂ.&l ©)

+Gp (X;,tl,u).ato +G, (Xl_,tl,u).&to.

avec :
_ og
X)L |
Gx( 110 oxT ‘Xl R
- og
e ) _%8 1
GT( 1»t1,H at‘xlstlﬁu’ ( 0)
- og
G“(Xl ’tl’“)zﬁ X7 th
8X{ est la divergence aprés la discontinuité, 8X; est celle d’avant le saut.
Apres la discontinuité (t > t,), on a a nouveau :
avec :
ot
F2X Xa t’“ = T|X )
( ) aXT RN
of.
F2t (Xa L, P-) = _2‘ X,t,u (12)
ot
of.
F2 (Xat’”-):_zx -
H auT ‘ SLH

Dans ce qui suit, on considere fj (X, t,pu) =15 (X,t,u)=f(X,t,p) ; cela est suffisant pour les appli-
cations qui en sont faites. Le comportement de la divergence infinitésimale est donc différent selon
la phase de trajectoire considérée. En particulier, lors d’une phase de chute libre, la divergence infi-
nitésimale de comportement régulier du systéme mécanique entre une discontinuité i et la suivante
(i+ 1) peut étre modélisée simplement par :

8X = F(X,t,p).8X, 8X(t;) = 8X{. (13)
Ainsi, en intégrant entre t; et ti,;, on peut écrire :
Xy =1 .8X] . (14)
J, est appelée matrice de passage.

Pourtant, pour étudier le comportement de cette divergence lors d’une discontinuité, plusieurs cas

peuvent étre distingués selon que (8tg, Spg) = (0, 0) ou non.

B Casoudt,=0etdy,=0

On se restreint dans cette partie au cas ou o, = 0 et 5t; = 0 (la valeur numérique des paramétres est
fixe et connue, ainsi que 1’origine des temps). Seules les conditions initiales en espace sont suppo-

sées aléatoires. Dans ce cas, il existe une matrice de saut explicite permettant le passage entre 3X;

et 8X;.
BLPC = n°263-264 = uillao(it/sept 2006 m



Cette matrice s’écrit :
SXi =S,.8X;,
avec :

S, = G(Xi_,ti,;J.)—[GX (Xi_,ti,u).f(Xi_,ti,p)—f(X;’,ti,u)+GT(Xi_,ti,uﬂ

y (15)
X[HX(X;,ti,p).f(X;,ti,u)+HT(Xi_,ti,p)} Hy (X5, t,1)-
S, est appelée matrice de saut pour la discontinuité i.
La pseudo-jacobienne du mouvement peut alors étre évaluée suivant une formule du type :
N
J = H‘]N—ISN—I'J07 (16)

i=1
ou N est le nombre de discontinuités par période (qui peut étre infinie).

Le but est alors de borner commodément la norme de J, et de la retenir comme indicateur de « diver-
gence » sur la grille.

Lestimateur li¢ a la pseudo-jacobienne peut étre défini comme suit. Soit un systéme mécanique non
régulier :

Vi=t, X=1(Xtu),
vt; tel que h(X,t;,1u) =0, g(X.t;,u)=0, (17)

f,g,heCl(R“xRst,R).

n est alors le nombre de variables d’espace, s est le nombre de parametres.

Soit J =TI J\ ;Sn_iJo la pseudo-jacobienne du mouvement, Vie N, i=1,..,N, h(X,t;,u)=0.

Alors :
a) Si N est fini :
Lestimateur proposé¢ est donné par :
N N
% = =|T Pr=iSn-ido| <o I-T T 01-11S; I (18)
i=1 i=1
b) Si N est infini :
Si Vie N*, ||| J; IS [I<1 ousi Vie N*, ||| J;S: [ <1 :
Lestimateur retenu est y =||[ J || .

Remarque :

— On ne donne qu’une borne commode a calculer en n’étudiant que les éveénements pris séparé-
ment. Par exemple, si le nombre de discontinuités est infini et que les normes des matrices de saut
et de passage et des jacobiennes ne sont pas toutes inférieures a 1, il faudrait procéder différemment
pour espérer avoir un indicateur meilleur. Ainsi, I’indicateur proposé ne débouche pas exactement
sur le calcul d’un exposant de Lyapunov, mais sur une borne plus commode a obtenir.

— Le cas | est illustré ci-dessous par le paragraphe sur I’impact de blocs ponctuels sur une

pente.
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B Cas ol 6t,#0ou dp, =0

Si on n’a pas dt, = 0 et 5p = 0, la matrice de saut ne peut plus €tre explicitée aussi simplement. Les
développements théoriques sont exposés dans 1’annexe B. On peut néanmoins définir un estimateur
dans le cas des conditions initiales (espace et temps) et des parameétres aléatoires comme suit. Soit
un systéme mécanique non régulier :

Vi=t, X=1(Xtu),
vt; tel que h(X,t;,1u) =0, g(X.t;,u)=0, (19)

f,e,h ecl(R“xRxRS,R).

n est alors le nombre de variables d’espace, s est le nombre de paramétres.

Soit 8;; = Gy (x;,ti,p)— CA T Hy (x;,ti,u) et S, tel que : Vi, [I| Sy [ <.

Soit Sy =-CA™ B+D et S, tel que : Vi, |[Sy | <,
Soit R tel que : Vi, ||| J; <R
Lindicateur retenu est alors :
; i-1 .
x=(S-R) 86X+ > (S, R). (20)
=0

Les constantes A, B, C et D sont définies dans I’annexe B.

Remarque :

Ici, comme auparavant, ceci est une borne pour I’estimation de la divergence de trajectoire. En
effet, la condition (58), donnée en annexe, est trés restrictive. Si elle est trop grossiére, il peut étre
nécessaire de réaliser la majoration a 1’aide de la formule générale (56) obtenue par récurrence.

Joxi
<% . Donc, la connaissance de
X

Lutilisation de cet indicateur y est alors trés simple. En effet,

en fonction de ||6X0

, mais il est également possible de déter-

¥ permet bien str de borner ”ESXEL

soit inférieure a une valeur limite.

miner ||6X0|| pour que HSXT

Lindicateur de divergence tangente est maintenant appliqué au probléme de la chute de blocs ponc-
tuels sur une pente, en utilisant une modélisation trés simple.

CHUTE D’UN BLOC SUR UNE PENTE D’ANGLE CONSTANT

B Modélisation du probléme

La modélisation utilisée ici pour le probléme physique est trés simple : le bloc est considéré comme
un point ponctuel de masse m. Par conséquent, on ne tient pas compte des phénomenes de rotation
et de glissement.

La figure 1 montre la modélisation utilisée du probléme.

Langle de la pente est noté 6, alors que la longueur de celui-ci est L. o et 3 sont les coefficients de
restitution normal et tangentiel.
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figure 1

Modélisation du probléme
de la chute de blocs

le long d’une pente.

X X]
X X2 ., .
Onpose: X = = . Donc I’équation du mouvement est :
y X3
Y] X4
X2
. sin (O
X:ﬂXJﬁ:g (). (21)
X4
g cos(0)

On utilise les deux constantes de restitution suivantes :

{er =aVy (a>0),

Viy =BVy (B<0). (22)

Les valeurs des constantes a et B peuvent étre prises en adéquation avec des valeurs physiques
utilisées pour des calculs de trajectoires de blocs de pierre sur pente. Elles peuvent dépendre par
exemple de la pente, de la nature du sol et de la nature du bloc en chute.

Les fonctions indicatrice et de passage sont :

h(X)=x3=0,
et
x| X
e(x)=| 2 || 2 (23)
X3 X3
xi) \Bxg
Remarque :

Dans ce cas ou les équations du mouvement, les fonctions indicatrice et de passage sont polynomiales
par rapport aux variables X, t et p, il est possible d’exprimer une réelle jacobienne du mouvement
car les développements utilisés sont alors exacts. On aurait :

VZy € R, VZ, € R, [[f(Zy) = £(ZO)| < |31 Zg = Za |-

Pourtant, on se borne ici a estimer I’indicateur tel qu’il a été présenté dans les sections
précédentes.

Une trajectoire typique, obtenue avec cette modélisation, est représentée sur la figure 2.
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figure 2

Trajectoire déterministe
d’un bloc de pierre sur
une pente et obtenue avec
la modélisation présentée
(xg=0m, Xy=1 misfl,
yo=-10m, y5=0ms"",
6=0,88rad, L=25m,

o =0,7071,p = -0,1732)-

y (m) -20t

10 20 30 40 50 60
x (distance en m)

On suppose que, dans une démarche d’ingénieur, les plages de variation des conditions initiales
et des parameétres sont déterminées. Le cas ou seules les conditions initiales sont incertaines va
d’abord étre étudié, avant d’élargir I’étude au cas ou les parameétres sont également inconnus.

B Casoudt,=0etdy,=0

Dans ce cas, en appliquant les résultats du paragraphe précédent :

0100
ost<t: sx=|0 000 3X,8X(tg) =8X
L ) S O e e
0000
t=t;:  Hi=[0 0 1 0],
(1 0 0 0
Gl = 0 a 00 ,8t1:6X3(tD, (24)
0010 X4(ty)
00 0 B
X5t
6x1—(a+1)L1_)8x3
X4(t1)
L | odx5 +(1-a)gsin(0) ox3
o (o]
8x3 +{B—1)dx3
pox; +(1-B)geos(0)— 23
X4(t1)_
01 00
. 0 0 0O
t>1t:8X = BX,8X(t=1;)=8X". (25)
0 0 0 1
0 0 00
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On en déduit la matrice de passage :

1 T, 00
. 01 0 0 (26)
oo 1 T
0 0 0 1
ou ITi = ti _tifl .
La matrice de saut s’écrit :
- e -
10 —(a+l) )
Xy tf)
0 o (1-0)En®
S; = x4(t;) ) (27)
0 0 B 0
0)
00 (1-p gcos( B
_ (1-8) o)
Le cas ou dt devient infini n’est pas pénalisant.
En effet, 5t devient infini lorsque :
X4 (t:):() = X4 (titl)zo- (28)
Alors avec la loi de restitution qui a été choisie, il faut exclure le cas :
+ .
X4(t0):}/0 =()ety0 =0. (29)

En effet, si ce cas est exclu, c’est-a-dire si y5 #0 ou y, # 0, méme en itérant il ne pourra jamais y

avoir x4 (t) =0. LCensemble (xl(t; ), X5 (85 ), x3(t; ), x4(tf)) est entierement compris dans ’en-

semble (xl(ti*_1 ) X (), x5(6)), x4(tf_1)) .

De plus, le cas d’une infinité d’impacts (dans lequel, méme si yo #0, x4 — 0 est impossible
ici avec la modélisation qui a été utilisée, si L est fini et la pente assez conséquente (supérieure a
45 degrés).

On utilise la norme subordonnée :

; (30)

1A= max 3|ay
]

car commode pour les calculs (il convient toutefois de s’en méfier pour I’interprétation géométrique).

On obtient immédiatement pour la matrice de passage :

1J; |||:max{1,1+Ti}:1+Ti£1+T (31)
ou T représente la « période » du mouvement, donc ici I’horizon en temps. En ce qui concerne la
matrice de saut, le calcul est moins évident. Tout d’abord, plusieurs hypothéses sont faites : y5 <0

. . - o . .
(il n’y a pas de poingonnement) et — >1 (la restitution tangentielle est plus importante que la

restitution normale). De plus, on appelle N, le nombre maximal de sauts réalisés par le bloc. La
norme infinie de la matrice de saut peut alors étre majorée indépendamment de i (pour le détail des
calculs, voir I’annexe D) :
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Si tan(e)(—yo +V3 —2y0gcos(6))+>k0 >0 :
N tan(e)(—yo +4¥3 —2y0gcos(6)j+xo
T+(1+a) (—%J .

9§ - 2yogcos(0)

gsin(6)

I'S; |]| = max a+(l-a) - (32)
(-8)" " 33 ~2yoecos(0)

gcos(0)

B+(1-B
( )(—B)Nll V35 = 2yogcos(0)

B
Si tan(e)[—yo NG —2y0gcos(6))+>k0 <0 :
tan (9)(—y0 +y3 —ZyOgcos(Q)j+X0

¥5 —2yogcos(0)

gsin(0)

I'S; |]| = max a+(l-a) - (33)
(-B)™ " {33 ~2yogcos(6)

gcos(0)

B+(1-B
( )(—B)N]1 35 —2yogcos(0)

B

I-(1+a)

Sachant que N, est fini, ainsi que les deux normes ||[J; ||| et ||| S; ||| (Vi), il est possible de majorer

lanorme ||| J ||| de la pseudo-jacobienne. En effet, en notant R =||| J; ||| et S=]||S; |||, on a alors :

<y =RN" SN (34)

Remarque :

— La formule (66) de majoration du nombre d’impacts (voir annexe C) peut parfois se révéler étre
trop grossiere. Il suffit alors de calculer la distance des différents bonds successifs et d’en déduire
le nombre effectué. Le nombre d’impacts est ainsi obtenu trés facilement.

— Cette méme formule dépend de conditions initiales et de parameétres qui peuvent étre imprécis.
11 s’agit alors de choisir les valeurs numériques les plus contraignantes pour calculer le nombre
maximum d’impacts.

Alors, pour a et b deux points voisins de la grille des conditions initiales en espace, leur divergence
de trajectoire en fin de pente pourra étre évaluée par une formule du type :

”Z(b)—Z(a)H ~|||dz]||.]b—a| <x.]b-a].
La finesse de la maille peut ainsi étre évaluée facilement (suffisante ou non, selon la précision

souhaitée).

B Cas ol ot,#0ou op,#0

Le probléme est modélisé comme auparavant, mais on choisit ici le vecteur de paramétres imprécis

- (a
égala: p= .
p
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Alors :

01 00 0 0
(tg <) t<t;:8X = 0000 BX + 00 .Bug,
0 0 0 1 0 0
0 0 0 0 0 0
t=t: éSt:—SX—fg (35)
X4
3x; —(a+1)228x3
X4
0 O
_ . Ox3
odx, +{l—a)gsin(0)—= 5 0
sx | P2 +(i-a)e ()x; +*2 ;.
0 0
8X3 +(B_1)6X3 0 XZ
Bdxy +(1-PB)gcos(8) SX_3
L X4 ]

On obtient de ceci les relations de passage de 8Xj_; a Xj etde X; a X :

(1 -t O 0
o 0 0 .
8Xi = .8Xi_1,
0 0 1 t-t
o0 0 1
10 —(a+D)22 0
in(6
P E I - GO N PP
6Xi = X4 SXI + 0 0 6“0
0 0 B 0 _
(e) O X4
gcos
00 (I-p)=——— B
L X4 J

B Majoration de la divergence de trajectoire en fonction
des divers parameétres du systeme

Pour cela, on majore le systtme d’équations (36) ou les conditions initiales et les paramétres
sont supposés aléatoires. En effet, il est ensuite aisé de retrouver le cas plus simple décrit dans le
paragraphe « Cas ou 8t = 0 et du, = 0 ». Les développements analytiques ont été reportés dans
I’annexe D.

On calcule une norme subordonnée pour les matrices intervenant dans les relations de passage.

Comme auparavant, on adopte ||| M ||| = sup; Z?:] ‘mij‘ .

Les conditions initiales sont supposées bornées : par exemple, que Xg €[Xg1,X02 . Xo €[X01.%02 ],
Yo €[Yo1-Yoz]: Yo €[Yor. Yoz ] € [ar,0n] et BE[Br.B,]-
On a alors logiquement yy; <0 et yp, <0.

De méme, d’apres leur définition, >0 et $ <0,donc: oy 20, a, 20 et B, <0, B, <0.

Mais on suppose également pour la simplicité des calculs yy; <0 et yp, <0.
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Lors d’un seul impact, la précision de la maille a utiliser pourra étre déduite de :

IA

oxi| < Erfexol.

(37)

IA

sxi] = ErF8Xo]+ G Jowol.

De plus, pour n impacts :

[8xa] < F-E-Joxin |+ G nol = (7)™ o] + G flsno |- X175 (F-EY
Donc :
Si F.E=1:
[5x5] = (E-F)" Ly J8Xo 1+ (n=1).G 3w,
Si FE#I1:
lox:| = (BB by Joxo ]+ .%.HSMOH.

Les constantes E , E, F , F et G sont définies dans I’annexe D.

APPLICATION ET UTILISATION DE L’'INDICATEUR

On a donné I’expression de la pseudo-jacobienne. Ceci permet d’estimer la finesse des calculs sur
grille nécessaire pour obtenir une certaine précision € en considérant comme valide 1’approxima-

tion : HSX;;

~ ||J DYy || < x.“SYO || ~g ou Yy = {XO} . La maille a utiliser pour obtenir une erreur
Ho

inférieure a une certaine valeur (faible) peut donc étre calculée simplement et rapidement.

Ainsi, si un calcul sur grille préconise un ouvrage de protection de hauteur h_ , la divergence de
trajectoire entre deux points de la grille peut étre calculée. On aura :

h < Ny +[8X)

— max

Il est alors possible de raffiner cette grille pour que, pour € donné, pour tout point, on ait
(cf. figure 3) :

h<hpax +€

Pour ceci, on suppose que les calculs numériques sur grille ont été réalisés avec un grand nombre
de points sur la grille.

figure 3
Problématique de
la protection de personnes N

et de biens a l'aide (JC(] 5 JC})
d’un dispositif passif. &‘\
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On utilise la formule (66) qui donne le nombre maximal d’impacts (voir annexe C), et on compare
alors ces résultats a ceux obtenus numériquement.

Pour cela, on consideére par exemple les valeurs numériques suivantes : xqg =0m, Xp; =0 ms,
).(02 :lm.S_l, Yoi1 :—]Om, Yoo :—9m, y()l :—2m.S_l, yOZ :—O,Sm.S_l, [31 :—0,22,
By =—0,17, 0y =0,69, 0, =0,82, 0=0,88rad, L =25m. Alors N; <3 (d’apres la formule
(66)).

On calcule les majorations des indicateurs de ”ESXl+ (formule (37)), pour dif-

, 8X3 et st;

férentes valeurs de la maille (0, 0,1 et 0,01), pour la majoration indépendante de i (formule (88),
annexe D) et celle dépendant de i (voir formules (81-86) dans I’annexe D). En particulier, on appelle

M, (j étant égal a 1, 2 ou 3) la majoration de I’estimation de ”ESX]LH indépendante de i et M, cette

méme majoration mais dépendante de i. Les résultats sont les suivants (tableau 1) :

tableau 1
Mﬂjoration de la H6X0|| HSMOH Ml Mli M2 M2i M3 M3i
divergence de trajectoire
apres le sautj (j =1, 2 0,01 0,01 11 0.4 329 1,1 98 185 850
ou 3), pour une différence
de conditions initiales et 0,1 0,1 11 4 3288 111 981 841 8 495
de paramétres donnée.
0,1 0 2,2 2,2 635 59 189 441 4511
0,01 0 0,22 0,22 63,5 59 18 945 451,1
0 0,1 8,9 1,84 2 653 51,8 792 401 3983
0 0,01 0,89 0,184 265,3 5,18 79 240,1 398,34
Remarque :

— on observe une relative proportionnalité des erreurs réalisées par rapport aux mailles ||6X0 || et
||8u0 || . Ceci est conforme aux résultats trouvés précédemment ;

— la majoration introduite par la formule (88) est grossicre. En effet, elle est indépendante du saut
considéré, contrairement a la majoration fonction du numéro du saut ;

— avec la majoration indépendante de i, le caractére aléatoire des parametres a des conséquences
plus importantes que celui des conditions initiales : pour une variation égale des paramétres et des
conditions initiales, la jacobienne varie plus pour la variation de parameétres ;

— cela n’est plus le cas si on considére la majoration plus fine, dépendante de i. Dans ce cas, une
variation des conditions initiales et une variation des paramétres de méme amplitude ont pratique-
ment le méme effet ;

— ces majorations (88) sont grossiéres. Si on désire des améliorations, il est alors possible de normer
ces matrices en fonction du saut considéré et non plus en fonction du nombre maximal N, de sauts.

ADAPTATION POTENTIELLE DE L’'INDICATEUR

Les valeurs numériques de I’estimateur du tableau 1 sont grandes. En effet, a chaque discontinuité,
on a majoré les matrices de saut et de passage en prenant en compte tout I’espace des conditions
initiales et des parametres possibles. De plus, cette majoration a €té réalisée sur un intervalle de
temps relativement long, du début de la trajectoire jusqu’a sa fin.

Dans un cas comme celui-ci, Iutilisation de I’indicateur proposé est alors la suivante : si sa valeur
est estimée trop élevée, localement ou globalement, il convient de raffiner la grille.

Au lieu de considérer un indicateur « global » en temps comme cela a été fait jusqu’ici (associé a

un exposant de Lyapunov, X(t) qui étudie une dynamique sur un temps long), on peut aussi envi-
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sager d’utiliser une méthode similaire localement en temps pour At > 0 intervalle de temps donné,

t, =mAt,meN" :

oy ] [ (e, )|
k(tn tp ) = . In ”5X<tp )“ =)
n>p
en bornant alors M seulement.
Jox (s )|

Pour n=p + 1, on retrouve un exposant moyen. En particulier, avec les valeurs données par le
tableau 1, il est visible qu’il est commode d’adapter la grille de calculs et/ou de déterminer un
coefficient de sécurité d’un impact du bloc au suivant. En effet, les constantes M| et M, ne sont pas
élevées, car locales. Ceci permet de mesurer la divergence entre un instant et I’autre et donc de dis-
tinguer les parties de la trajectoire qui posent probléme. Le raffinement de la grille s’effectue alors
localement, comme dans le cas d’équations différentielles ou I’on adapte le pas de temps. On adapte
(éventuellement automatiquement) la maille de la grille localement en fonction de I’indicateur.

CONCLUSION

Le but de cet article était d’estimer un indicateur de la divergence tangente de trajectoire, d’exa-
miner la faisabilité des calculs et de trouver un outil pour tenter de controler les sensibilités aux
conditions initiales et/ou aux parametres induites par les systémes non réguliers. Cet indicateur
devait pouvoir étre estimé commodément sur un continuum de conditions initiales ou de parameétres
et pas seulement sur une grille, ce qui est le cas avec la démarche proposée qui permet de traiter
séparément chaque événement non régulier et de majorer sa contribution, méme si la borne peut
&tre treés grossiere.

Pour ceci, on a d’abord défini en toute généralité les matrices de saut et de passage pour ces systémes.
Ensuite, on a étudié le probléme de chutes de blocs sur une pente. Dans ce cas, on a pu majorer la
pseudo-jacobienne, ce qui permet d’estimer le caractére adéquat ou non de la maille utilisée.

Enfin, on a proposé des pistes d’amélioration du calcul de cet indicateur, permettant une gestion
plus fine des mailles de grille.

Cette méthode peut a priori étre appliquée a toute modélisation de la chute de blocs ou par
exemple :

— le bloc de pierre est souvent modélisé par un ellipsoide ou une boule [2]. En particulier, il peut
présenter un mouvement de rotation qui n’a pas été pris en compte ici. Le vecteur position aura alors
deux composantes supplémentaires : la rotation et le taux de rotation ;

— de plus, il a été considéré ici que le mouvement se décompose en deux phases distinctes : la chute
libre et I’impact, alors qu’un bloc peut présenter des mouvements de roulement et de glissement.

Ces derniers sont d’ailleurs ceux qui posent le plus de problémes. En effet, on a alors : x4 (tf) =0,
la formule (44) n’est plus valable [17]. Pour résoudre cette difficulté, on peut changer de modélisa-
tion (considérer ces cas comme des mini-rebonds, [4]) ou de formalisme [11].

1l faudrait en examiner la faisabilité pour d’autres modélisations, en observant que la perte d’optima-
lité introduite par les inégalités est compensée par le traitement séparé des événements irréguliers.
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ANNEXE A
DEVELOPPEMENT THEORIQUE DE L’EVOLUTION
DE LA DIVERGENCE DE TRAJECTOIRE

(tg S)t<ty:

. Of] of of
OX =—(X, t,))0X +—(X,t,1).0t + —=( X, t,11).0H,
R ROIE SR SORRY

Si on suppose :

5t = 0= 5t = 8ty,

i (39)
O = 0= dp = dyy,

alors, simplement :
8X = FIX (X, t, H)SX + FIT (X, t,H)StO + FIH (X, t, H)Suo,

avee ©

of,
Fx (X.t,p)= oxT 1%t
of
B (X, t,n)= Ellx,t,p , (40)

of,
R (Xtp)= ﬁ Xt

A Pinstant t=t, en notant : SX(tf) =8X] , et en cherchant SX(tf): )_((tl)—X(tf), sous la

contrainte 0 =h ()_((T,H),T,ﬁ) et avec :

X(TE) =X +3X] +f; (x; +5X;,t1,p).6t,

_— (41)

{=t+8t,
h(Xl_,tl,p)— 0,
on obtient alors avec un développement de Taylor au premier ordre :
0~ [HX (X{,tl,u).fl (Xf,tl,u)+HT (X;,tl,pﬂ.&l
(42)
+[HX (X;,tl,u).sx; +Hy (x;,tl,p).&o +H, (Xf,tl,u).ﬁuo},
avec plus explicitement :
_ oh
HX (Xl 9“7“) = —axT ’le’tl’” B
_ oh
H (X ,t,):-‘, , 43
TR )= 2o x5 (43)
_ oh
H“(Xl ’tl’“):ﬁ‘xf,tl,u'
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Supposons que A =Hy (Xf,tl,u).fl (Xf,tl,p) +Hrp (Xf,tl,u) est inversible. Cela signifie que

la trajectoire perturbée, c’est-a-dire celle dont les conditions initiales en espace et en temps et les

parameétres ont été perturbés, présente le méme type de comportement que la trajectoire initiale.

Alors, I’intervalle de temps entre les instants de discontinuité de la trajectoire non perturbée et celle

perturbée sera :

8ty = —[HX (Xf,tl,u).fl (Xf,tl,u)+HT (Xf’tl,H)Jil

X[HX (x;,tl,u).sx; +Hyp (X;,tl,p).&o +H, (X;,tl,u).spo].

La différence des deux trajectoires apres I’impact vaudra :

avee |

i)

et:

.
~ (X7, tm)+ G (Xf,tl,p).[SXf +f(X;,t1,p).5t1]

+Gr (Xl_,tl,u)+GT (Xl_,tl,p).ﬁto +G, (Xl_,tl,u).Suo,
G (.10

GM(Xf,tl,u)z

Donc, en utilisant I’approximation (45) :

8X* =Gy (X;,tl,u).sxl‘

+[GX (X7 tro) £ (X740 + Gy (Xl_,tl,u)—fz(XT,tl,u)].Stl

og

- og
X )=— )
GT( 1,t1,l/l at‘xl’tl’”"

og

ouT Xt

+Grp (Xl_,tl,u).éto +G,, (Xl_,tl,u).épo.

Finalement dans le dernier cast>t,ona:

8X = FZX (X,t, M)SX + FZT (X,t,p.)ﬁto + FZ]J (X,t,u).guo,

avee |

Fox (X, t,p) =

of,
My
oxT I

of.
B (X»t’”) = Ez‘X,t,H ’

qu (X, t,l,l) =

8f,
X, s .
ouT Ly

aXT ’Xf,tl,p ?

(44)

(45)

(46)

(47)

(48)

(49)
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ANNEXE B
DETERMINATION DES RELATIONS DE PASSAGE POUR 8T # 0
OU M # 0

Dans ce cas, il faut réécrire les expressions précédentes de la maniére suivante :

ot = A" .[HX (X ti.1)-8%; + B],

(50)
85X =Gy (x;,ti,u).esx; +C.8t, +D,
avec :
A = Hig (X3 t5) £ (X7 o)+ He (X,
B:HT(X ,tl,pt) 3ty +H, ( l,ti,p.).S},LO,
= (X5 o (oG (it ().
D= GT(X . )6t0+G ( l,ti,u).Suo.
On obtient alors
85X :[GX (X3 i) -C. A Hy (x;,ti,u)]zsx; ~CA1.B+D. (52)

Remarque : si on pose 5t0 =0et Suo = 0, cette équation (52) s’écrit bien sous la forme de la for-
mule (15) :

X :[GX (X5 o) -CA iy (x5 tl,p)]ﬁx;. (53)

On réécrit alors le probléme de la fagon suivante :
8XT =1.8X{ 4, (54)
SX; =5,;.0X; +8S,;. (55)

Par récurrence, la divergence de trajectoire apres le saut i peut étre exprimée en fonction de la diver-

gence de conditions initiales 0Xg :

SXT :H Sl( ) i J6X0 +Z 82J Hl J+IS” ‘II’
OU.Vk>l,Slk:J1k=0.

(56)

Il est a remarquer que cette €quation (56) fait intervenir les variables S , S, et J, qui sont fonction
des divergences en temps 6t et en parametre Oy,

En particulier, si on peut écrire :

;i [I1<R,
1S4 Il = Sp, (57)
II1S2i [l <S5

ouR, S et S, sont des constantes indépendantes de i, I’équation (56) peut se majorer :

||5Xo||+Sv (81 R). (58)

i

: 1-(S; RY
R)! 6|+, IR)

Si S|.R#1: ”éxf <(s .
-, R

- 1-(S,.R)'
R 5o+ 80 =SR]

Si $|.R#1: ”éxf < —
s,
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ANNEXE C
DISTANCE ENTRE DEUX IMPACTS
Pour calculer le nombre d’impacts, il faut déterminer N qui est le premier entier tel que :

N
DX —xig 2 L. (59)

i=1
Pour cela, il convient d’estimer les x,, X;,y.et V:.
) i’ 1 i 1

Les équations du mouvement sont :

in(6
XZgSln( )(t—t0)2+XO(t—t0)+X0,
2(9) (60)
COS .
y=* (t=to)* +¥0(t=to)+Yo-

Il y a impact lorsque y = 0, ainsi I’intervalle de temps entre deux impacts est égal a :

2
~¥io + \/(yf_l ) —2gyi_; cos(6)

geos(6) (61)

L=ty =

Les vitesses lors des impacts sont donc :

K7 = tan(0)] =50 +53 -2 cos(0) |+ 50
$1 =95~ 2ey0 cos(60), (62)

y; = _yiJr—la

X7 = -2tan(0).y5, + X1

Par récurrence, on obtient alors :

Vnzl,y, = (—[3)“71 ¥ —2gy cos(8),
vn>2,x; =a! (tan((%)[—yo +\y3 - 28y, cos(@)} + Xoj

1—(=a/B)™"

_(_B)n—l,ztan(e). y(z)—ZgyO cos(0). T ofB

« [ “jn_l tan(e)(—yo /%5~ 280 cos(G)j +Xg (63)
vnz2, —f =|-= .
Yn B §5 — 22y, cos(0)
1-(-a/p n-l
—Ztan(ﬂ)%
VizlLt —t_ = #.(—B)i*1 ¥ 28y cos(6).
o gcos(0)
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On note :

X = tan(e)(—yo +\¥3 — 2y, cos(e)j +Xg,
Y =~ +/¥5 22y cos(8),

Z=.y5 -2y, cos(6).

On calcule ainsi la distance entre deux impacts :

sin(0 X
Xl_X0:2 ( )2Y2+ COSO(G)Y
gcos(0) g
2sin(0 i i
Wiz oxg gm0 g2 2yl
gcos(6) geos(0)
i-2
i-2 i-2 1_(_a/B)l
X- 2tan(6).Z
x| a (-B) an(0) T olp
N est le premier entier tel que :
Nl Nl
LZin -Xi_1.L2x;-Xq +in —Xi_1-
i=1 i=2
En particulier, on peut écrire :
Ni 2sin(0).2* .
LZX] —X0+ZIL)?. — )21 2.
i= gcos(6)”
Donc :
2
geos(0) (I_Bz) sin(0) 5 X
In| 1- > L- > Y - Y
2sin(0).2° 2gcos(0) gcos(6)
Nl = +2

21n(-p)

(64)

(65)

(66)
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ANNEXE D
MAJORATION DES NORMES DES MATRICES DE SAUT
ET DE PASSAGE

Les vitesses avant impacts X, (t;) et X4 (t;) doivent étre estimées. Ceci est réalisé par récurrence ;
les résultats sont donnés par la formule (63).

On utilise les notations suivantes :

[ Sl ST

) (67)

0 o (1-0)E00)
Fi = X4 (tl_) ° (68)
0 0 B 0
cos(6
00 0-pER? g
| X4 (tl ) |
"o 0
o | (t;) 0
L= 69
i 0 0 (69)
0 x (t;)_
On calcule une norme subordonnée pour ces matrices.
Comme auparavant, on utilise ||| M |||= sup; ZE‘:I | m; |
I1E; [ll= max {L,1+t; —t;4, (70)
:1+ti _tifl’ (71)
. )
- Jyo -2 0
1+ Yo Ty }éogcos( )siizl.
_ | geos(0) a2)
2(-8) . .
1+ gc(os()G) Vg —2yogcos(0) sii> 1.
De méme :
X3 (t;) gsin(0) gcos(0)
I E Il = max 41+ (a+1) ,a+(l-o) ,—B+(1-B) (73)
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doncsii=1:

tan(@)(—yo +,¢y3 —2y0gcos(9)j+5{0
1+ (o +1)
¥ — 2ypgcos(0)
sin(0
Il E ]l = max ot (1-a). = gsin(0) , (74)
Yo —2yogcos(6)
gcos(6
Y0 —2yogcos(8)

etsii>1:

e (as) [_ﬁji] tan(e)(—yo +1¥8 =2y, COS(@))+X0
p

Y5 -2¥o cos(6)

—2tan(6)—1_(_G/B)i_2]

Il [[} = max I+a/B (75)
a+(l-o). gsin(6)
(-B)'™" {35 — 2y, cos(6)
_p+(1-p) gcos(6)
(-B)' ' /5 — 2y cos(6)
Ona: ||| G; ||| = max {xz (t;), X4 (tf )} Par suite, il vient :
Sii=1 (76)
Il G; Il = max {tan(e)(—yo +w/y§ —2y0gcos(6)j+>k0, y% —2y0gcos(9)}. (77)
Sii>1 (78)

(-B)" " /32 —2yogcos(6)
| G; ||| = max oci1{tan(@)(—yo+1/y%—2y0gcos(6))+>ko} . (79)

i 1=(-a/B)

.2
-2 0
I+o/p Yo YOgCOS( )

—2tan(0)(-p)

Sion suppose que les conditions initiales sont bornées : par exemple, supposons que Xq € [Xq1, X2 ],

X0 €[X01-%02]> Yo €[Yo1:Yo2]> Yo €[Jo1-¥02]> @ €oq ez ], B[B.B2]-
On a alors logiquement yy; <0 et yp, <0.
De méme, d’apres leur définition, oo =0 et f<0,doncona:oy >0, oy 20 et B; <0, oy, 20.

Mais on suppose également pour la simplicité des calculs y5; <0 et yp, <0.
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Par ailleurs, on note :

Z = \yi —2yogcos(6),

Z = \/5/31 —2yg1gcos(0),

Z, = \/Y%z —2yppgcos(8),

Y = -¥ +\/§’(2) —2yggcos(0),

Y, = Vo +\/5/%1 —2yp12c0s(8),

Y, = -V +\/Y(2)2 —2ygpgcos(6),

X = tan(e)(—yo +\¥3 —2y0gcos(9))+>k0,

Xy = ta“(e)(‘Ym +\/Y(%1 —ZYOlgCOS(e)ijona
Xy = tan(®)(‘5’oz +\/Y(2)2 —2Y02g005(9))+5<01-

On obtient les majorations suivantes :

E, I <1+ —1
He gcos(0)’
2 (_ i
e <128 5 i,
gcos(0)
De méme :
X sin(0 cos(0
5 =m0 3L - ) gy 12, 2200}
2 2 9
-l i-2
1—(-
l+((X2 +1) [—ﬂ] ﬁ—ztan(e)w ,
B Z, 1+oy /By
in(6
I [l < max oy +(1-0y ) gsmig) Vi>1.
(-B2) " Z,
cos{0
_B]+(1_B]) g i7(1)
(_ 2) Z,
Enfin :
Gy Ill < max {X5,Z;},
16y 1< max (1) 2y Xa —2an(8) ) mC22) S Ly
LR 1 Y2 A2 1 . 1+(11/B1 L s .

(80)

(81)

(82)

(83)

(84)

(85)

(86)
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Le nombre maximal d’impacts est connu par la formule (66), qui fait intervenir des paramétres
incertains (Y, Z, B). Ainsi, avec les intervalles de variation des parametres et des conditions initiales
qui ont été introduits ci-dessus, on peut écrire :

2
gcos(0) (I_B%) sin(6) 5 X
ln 1- 5 L— 5 Y2 — Yz
2Sin(9).Z1 chos(e) gcos(e)
Nl = 2ln(_'32) +2. (87)

. . o o . . . .
Finalement, si on suppose encore que ——L>1 et _[3_2 >1, on obtient les majorations suivantes :
1 2

ITE < By =1+ ———<
gc

27
IIEi I<E=1+——=,Vi>2,
gco

Iy |”SF1:maX{l+(1+0‘2)'£,az +(1—0c1)gsm(9),—ﬁl+(1—B1)&5(9)}
72 2 7
N1 -
] X 1=(=0y /)" (88)
Fl SF: 1+ 1+ . — . _2tan e —
i mex o) { 52] z, (©) 1+, /B,

gsin(6) gcos(6) } .
o +(1-oy ) ————, By +(1-B) ) —————},Vi>2,
’ 1 (—Bz)Nl ', 1 1 (—Bz)N[ ',

N,-2
1—(— 1
I1G; Il < G = max{ X, +2tan(8).Z;. (—a2/P2) VAR
I+ay /By
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