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INTRODUCTION

De nombreux matériaux du génie civil sont composés d’un assemblage de grains solides, seuls (sols 

pulvérulents, graves non traitées, granulats, ballasts), en présence d’un fl uide (sols saturés, ciments 

frais, matériaux de chaussées lors de leur mise en place), ou inclus dans une matrice solide (bétons, 

■ RÉSUMÉ
Les assemblages désordonnés de compacité maximale sont étudiés par 
simulation numérique de type éléments discrets pour des particules sphériques 
monodispersées ou bidispersées, le rapport des diamètres étant fi xé à trois. 
La valeur maximale de la compacité correspond à l’équilibre sous chargement 
isotrope de particules rigides sans frottement. Une étude statistique des effets 
de taille permet d’évaluer, dans la limite des grands systèmes, les compacités 
maximales des assemblages monodispersés, pour lesquels on retrouve la 
valeur classique 0,639, et bidispersés, pour deux valeurs distinctes de la fraction 
volumique de grosses particules. On observe que le prolongement de l’étape 
initiale de l’assemblage, dans laquelle les grains sont agités et interagissent par 
collisions, provoque une augmentation de la compacité fi nale qui s’accompagne 
de la nucléation d’un ordre cristallin pour un système monodispersé et d’une 
ségrégation progressive pour un mélange binaire. Quoique lent et peu sensible 
dans nombre de situations pratiques, cet effet conduit à défi nir la compacité 
maximale des états désordonnés comme celle que l’on obtient dans la limite 
des assemblages rapides. Quelques prolongements possibles de cette étude 
préliminaire sont enfi n suggérés.
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■ ABSTRACT
Disordered assemblies with maximum packing fraction are studied by discrete 
element numerical simulation for monodisperse or bidisperse spherical particles, 
the diameter ratio being set at three. A maximum packing fraction value 
corresponds to an equilibrium state under isotropic loading of rigid frictionless 
particles. A statistical study of size effects enables one to evaluate, in the limit of 
large systems, the maximum packing fractions of both monodisperse assemblies, 
for which the conventional value 0.639 is retrieved, and bidisperse ones, for 
two distinct values of the coarse particle volume fraction. An enduring initial 
assembling step in which agitated grains interact through collisions induces an 
increase in the fi nal packing fraction due to crystalline order nucleation for a 
monodisperse system or to a gradual segregation for a binary mixture. Albeit slow 
and moderate in a number of practical situations, this effect leads to a defi nition of 
the random close packing state, as the one obtained with frictionless rigid grains 
under an isotropic pressure in the limit of fast assembling processes. The article 
will close with a few suggested potential extensions to this preliminary study..
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enrobés bitumineux en service). La compacité – c’est-à-dire la fraction Φ du volume de matériau 

occupée par les particules solides – est toujours au nombre des grandeurs utilisées pour caractériser 

l’état de ces matériaux, pour tenter de prédire leur comportement ou aider à leur formulation. On 

se réfère souvent à une compacité maximale , implicitement supposée liée à la seule géométrie 

des grains. Ainsi, pour la formulation des ciments [1], on corrèle la viscosité d’une suspension à la 

compacité maximale des grains solides. En mécanique des sols, où on utilise souvent l’indice des 

vides  au lieu de la compacité, des procédures normalisées en donnent des valeurs maxi-

males et minimales [2], tandis que l’étude du comportement mécanique des matériaux granulaires 

souligne l’intérêt de la notion de compacité (ou d’indice des vides) critique, qui est approchée dans 

les états d’écoulement plastique en grandes déformations [3].

Les méthodes de simulation discrète [4], qui connaissent actuellement un grand essor, donnent 

accès à l’ensemble des degrés de liberté d’un assemblage de grains solides. Le présent article a 

pour but de montrer qu’elles permettent de préciser la notion d’état de compacité maximale, en 

dégageant les infl uences de la géométrie et de la micromécanique, et de déterminer  pour des 

systèmes simples dont la granulométrie n’est pas trop étalée.

Pour un rapport des diamètres établi à trois, on a choisi d’étudier des mélanges avec deux propor-

tions différentes de volume solide correspondant aux grosses particules (p = 0,5 et p = 0,7) et de 

limiter le nombre total N  de particules à quelques milliers dans les échantillons simulés.

On dresse le bilan de cette étude préliminaire, avec les compacités obtenues, l’infl uence de N  et les 

fl uctuations statistiques entre échantillons différents. Auparavant, quelques défi nitions utiles sont 

rappelées, les méthodes numériques employées sont rapidement présentées, tandis que des résultats 

connus dans le cas du système monodispersé sont rappelés. On évoque pour fi nir quelques pers-

pectives quant à la poursuite de l’application de la simulation numérique discrète aux assemblages 

granulaires polydispersés.

DÉFINITIONS - MÉTHODES NUMÉRIQUES

■ Qu’est-ce qu’un état de compacité maximale ?

Avec des billes de la même taille, la compacité maximale de l’assemblage aléatoire est classique-

ment estimée à une valeur légèrement inférieure à 0,64 [5, 6].

La notion d’état désordonné de compacité maximale est a priori un peu fl oue. Il s’agit en principe 

d’un maximum géométrique, concernant des particules rigides et impénétrables, mais qui exclut 

certaines confi gurations considérées comme trop ordonnées (en particulier celles dans lesquelles on 

peut clairement déceler un arrangement cristallin, au moins localement).

Une remarque permet de préciser cette défi nition : si l’on se donne une défi nition de la compacité 

Φ adaptée aux conditions aux limites choisies, les confi gurations qui réalisent un maximum local 

de Φ, sous les contraintes d’impénétrabilité, coïncident exactement avec les confi gurations d’équi-

libre stable de grains rigides non frottants soumis à une pression isotrope [7]. « Maximum local » 

signifi e qu’il n’existe pas de mouvement augmentant Φ qui ne viole pas les contraintes stériques. 

Le problème posé en termes géométriques a donc naturellement un sens mécanique : partout où 

les contraintes d’impénétrabilité sont actives apparaît une force normale entre les deux grains en 

contact, qui est un multiplicateur de Lagrange associé à cette contrainte.

Il est donc tout naturel de chercher à obtenir ces états en soumettant des grains non frottants à une 

pression isotrope. C’est un procédé fréquemment employé en simulation numérique pour obtenir 

des confi gurations denses [8-11].

Un état de compacité maximale est un état d’équilibre d’un ensemble de grains rigides sans frotte-

ment dans les contacts, soumis à une pression isotrope.
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■ Qu’est-ce qu’un état désordonné de compacité maximale ?

On dispose de différents indicateurs (paramètres d’ordre) pour la cristallisation des systèmes de 

« sphères dures » [11-13]. Celle-ci se manifeste à partir d’une compacité d’environ 0,49 en présence 

d’une agitation thermique maintenue (dans le modèle de fl uide pour lequel les collisions conservent 

l’énergie cinétique), mais elle est relativement facile à éviter dans la pratique des calculs si on se 

place à Φ ≥ 0,55 [12]. Avec des billes macroscopiques qui dissipent l’énergie dans leurs contacts 

et échappent à l’agitation thermique spontanée, on peut retrouver la tendance à la cristallisation 

lorsque l’assemblage est soumis à des vibrations ou à un cisaillement oscillant [14].

Le phénomène de cristallisation disparaît lorsque la largeur de la distribution des diamètres (écart-

type d’une distribution gaussienne rapporté à la valeur moyenne) est de l’ordre de 6 % du diamètre 

moyen [15].

Ce qu’il faut craindre alors, c’est la ségrégation des particules par taille, autre cause possible d’inho-

mogénéité. Les mélanges de sphères de différentes tailles, si on les considère comme des molécules 

d’un fl uide ou des particules colloïdales soumises au mouvement brownien, peuvent exhiber un 

diagramme de phase assez complexe, qui dépend fortement du rapport des tailles, comporte éven-

tuellement plusieurs phases fl uides et plusieurs phases solides, etc. On pourra par exemple consulter 

la référence [16] et la copieuse littérature à laquelle renvoie cette étude. À densité élevée, la structure 

la plus stable implique toujours une séparation de deux phases de compositions différentes. Comme 

dans le cas monodispersé, en revenant aux particules macroscopiques (c’est-à-dire sans agitation 

thermique ou mouvement brownien), on observe que la manipulation d’un mélange de particules 

de tailles différentes (qu’il s’agisse d’une vibration continue, de secousses répétées séparées par des 

temps de repos, etc.) tend à induire le même type d’organisation que l’agitation thermique spontanée 

des systèmes moléculaires ou colloïdaux : on assiste à une ségrégation progressive [17-19]. De 

même, la mise en écoulement des matériaux granulaires conduit à la séparation des populations de 

grains selon leurs tailles [20]. Avec les sphères d’une seule taille, on peut défi nir un état de compa-

cité maximale aléatoire si on a un maximum local de Φ sous les contraintes d’impénétrabilité dans 

l’espace des confi gurations et si on ne décèle aucun germe de cristallisation locale.

Il est logique d’adopter une défi nition analogue pour les systèmes bidispersés, en remplaçant la 

cristallisation par la ségrégation.

On constate que, pour des échantillons assez grands, les états désordonnés de compacité maximale 

possèdent tous (dans la mesure où les évolutions lentes vers la cristallisation ou la ségrégation n’ont 

pas eu le temps de se produire) la même compacité qui fait l’objet de la présente étude.

Les résultats rappelés ci-après dans le cas des billes d’une seule taille et présentés plus loin pour les 

mélanges binaires indiquent dans quelle mesure, pour le procédé d’assemblage indiqué ci-dessous, 

la compacité peut dépendre de la durée de la phase initiale dans laquelle les grains sont agités.

Un état désordonné de compacité maximale peut être défi ni comme un état d’équilibre d’un ensemble 

de grains rigides sans frottement dans les contacts, soumis à une pression isotrope, pour lequel les 

évolutions vers l’ordre cristallin ou vers la ségrégation des mélanges restent négligeables. 

■ Procédure de simulation

Pour produire des états homogènes, commodes à caractériser et dépourvus d’effets de bord, on 

utilise des conditions aux limites périodiques (avec d’autres conditions de bord, comme par exemple 

des parois rigides, il faudrait contrôler l’homogénéité des confi gurations obtenues, éventuellement 

introduire des corrections dues aux parois, etc.). La méthode de calcul utilisée est la dynamique 

moléculaire, appellation abrégée en DM ci-dessous, que l’on désigne souvent comme « méthode 

aux éléments discrets », avec des sphères assez rigides et des ingrédients d’inertie et de dissipation 

visqueuse appropriés – ces derniers garantissant une restitution nulle dans les collisions binaires. 
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La raideur des contacts est telle que dans l’état fi nal l’« interpénétration » typique des sphères en 

contact (c’est-à-dire, bien sûr, la défl exion normale du contact) soit de l’ordre de quelques , d 

étant leur diamètre. Pour des explications et des références plus détaillées sur la méthode, le lecteur 

peut consulter un article récent [4].

Au préalable, les particules sont disposées soit séquentiellement, « au hasard », en évitant les inter-

pénétrations (ce procédé, dit du « parking aléatoire », impose de commencer les calculs dans une 

confi guration de compacité assez faible), soit sur les sites d’un réseau régulier. Dans une seconde 

étape, la confi guration de départ est mélangée : on donne aux grains une certaine énergie ciné-

tique et on les laisse interagir par des collisions qui conservent cette énergie (chocs élastiques), à 

la manière des molécules d’un fl uide (qui seraient toutefois dépourvues d’interaction à distance). 

Lorsque la position de départ était sur un réseau, on s’assure alors que cet ordre initial a bien disparu 

dans l’étape de mélange. La durée de la phase de mélange et son infl uence possible se mesurent 

au nombre de collisions moyen par grain à une compacité donnée. Une possibilité intéressante, en 

particulier dans le cas de systèmes polydispersés, pour lesquels il peut être diffi cile de déterminer 

une confi guration initiale au hasard avec une compacité qui ne soit pas trop faible, est l’utilisation 

d’un algorithme qui permette simultanément de mélanger et de compacter, pour que le recours 

à la DM puisse n’intervenir que dans une étape plus tardive. C’est ce que fait l’algorithme de 

Lubachevsky et Stillinger [21, 22] (abrégé en LS ci-dessous), qui consiste à calculer des collisions 

entre des objets qui se dilatent à vitesse constante, de sorte que la compacité augmente au cours du 

temps.

Les résultats présentés dans la suite font tous appel à cette méthode dans une première étape, et ses 

effets sont testés ci-dessous dans le cas monodispersé.

RÉSULTATS POUR LES BILLES MONODISPERSÉES

■ Procédure directe - Temps caractéristiques

On a pu vérifi er que l’on obtenait avec un seul diamètre de billes la valeur  en 

effectuant l’étape de mélange à  (il suffi t alors d’une dizaine de collisions par grain pour 

faire disparaître toute mémoire de la confi guration initiale) puis en achevant le compactage par 

DM avec des particules déformables et des chocs mous. Cette valeur résulte de moyennes sur une 

série de 5 échantillons de N = 4 000 sphères. Une autre série de confi gurations de 1 372 sphères 

donne . L’erreur due à la légère déformabilité des contacts est, avec le modèle retenu, 

estimée à  et donc négligeable, vu l’incertitude sur Φ. Cet intervalle de compacité 

est évalué comme indiqué dans la référence [11], en utilisant la propriété particulière d’isostaticité 

de la structure qui porte les forces dans un assemblage de billes rigides sans frottement.

On convient dans le présent article d’indiquer comme intervalle d’incertitude un écart-type de part 

et d’autre de la moyenne.

Pour donner une idée approximative de la durée du processus de compaction (deuxième étape), 

qui est calculé à pression contrôlée P, on peut utiliser le temps caractéristique  associé 

à l’inertie des grains de masse m et de diamètre d soumis à des forces d’ordre . La compacité 

fi nale est approchée (à moins de 0,01 près) en quelques dizaines de τ. Ensuite, si on désire une 

confi guration bien équilibrée (dans laquelle le réseau des contacts et les valeurs des forces sont 

déterminés avec une bonne précision), il faut poursuivre les calculs pendant un temps qui peut 

atteindre quelques centaines de τ (il faut noter qu’il est relativement diffi cile de stabiliser des grains 

non frottants dans une position d’équilibre). Pour avoir un point de comparaison avec une expé-

rience de laboratoire, on peut considérer par exemple un processus de dépôt sous gravité. Une telle 

procédure est couramment employée dans les laboratoires de mécanique des sols, et en contrôlant 
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débit et hauteur de chute libre – on parle alors de pluviation contrôlée [23, 24] – elle constitue un 

procédé de fabrication reproductible d’échantillons homogènes dont la compacité peut être variée 

à la demande. Par la simulation numérique [25, 26], on peut comparer les assemblages de billes 

assemblées par pluviation aux confi gurations obtenues par les processus de compactage isotrope 

idéaux, dépourvus d’effets de bord, tels que celui qui est mis en œuvre dans la présente étude. On 

vérifi e alors que les états étudiés ici sont bien similaires à ceux que l’on peut trouver dans des situa-

tions plus proches d’une expérience réelle.

Dans le procédé de dépôt gravitaire, la pression typique, celle qui règne dans la couche proche de 

la surface libre où les grains se réarrangent, correspond au poids d’une dizaine de couches granu-

laires. En prenant donc , on aura , ce qui donne environ s avec des 

grains millimétriques. Les temps trouvés, de l’ordre du dixième de seconde pour l’assemblage par 

déposition d’une couche de 10 grains d’épaisseur, ou de la seconde pour remplir un récipient de 

10 cm de hauteur, semblent donc comparables entre le calcul numérique et la fabrication d’échan-

tillons en laboratoire.

Cette compacité pour les assemblages de sphères d’une seule taille est en bon accord avec les 

résultats d’expériences en laboratoire [5, 6] et avec d’autres travaux numériques. Ainsi, O’Hern et 

al. par exemple [27] donnent , résultat obtenu par extrapolation vers la limite 

des grands systèmes (soit ). Ces auteurs ont mené à bien une étude systématique de l’in-

fl uence de la taille du système sur la compacité maximale. Ils ont observé une légère infl uence du 

nombre N de sphères sur la valeur moyenne dans les échantillons de N sphères, . Celle-ci 

tend à augmenter vers sa valeur asymptotique dans la limite où  comme :

  (1)

avec  et .

Ils ont également déterminé l’infl uence de N sur la largeur w (largeur à mi-hauteur d’une courbe en 

cloche) de la distribution des compacités dans les échantillons de taille N :

   (2)

avec w
0
 = 0,16 ± 0,04 et Ω = 0,55 ± 0,03.

Les équations (1) et (2) s’appliquent aux résultats de [27] pour N ≥ 64.

■ Effet d’une agitation prolongée : algorithme LS

Dans un second temps, on a testé l’usage de l’algorithme de Lubachevsky et Stillinger (LS) pour ne 

recourir à la dynamique moléculaire qu’à une densité plus élevée.

Si l’on utilise l’algorithme LS jusqu’à obtenir Φ = 0,632 (avec 6 000 collisions par particule en 

moyenne pour arriver à cette compacité), on constate que l’achèvement ultérieur du compactage par 

DM produit des compacités plus élevées que la valeur trouvée précédemment : Φ = 0,6423 ± 0,0004. 

Il est diffi cile de repérer un ordre local dans ces nouvelles confi gurations, l’évolution vers l’ar-

rangement cristallin restant très embryonnaire (ceci peut se contrôler quantitativement avec des 

« paramètres d’ordre » comme dans [12, 13]). Toutefois, si on prolonge encore l’étape de calcul par 

la méthode LS (comme cela a été fait dans [28, 29]), on peut obtenir toutes les compacités intermé-

diaires entre celles qui viennent d’être citées et la valeur  du réseau cristallin parfait, 

correspondant à des systèmes partiellement ordonnés selon les motifs cubique à faces centrées ou 

hexagonal compact.
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On voit qu’il n’est pas possible en principe de considérer la valeur de la compacité maximale 

 des systèmes désordonnés comme unique. Toutefois, si l’usage de l’algorithme LS est poussé 

jusqu’à Φ = 0,59 avec seulement 100 collisions par bille, on obtient à nouveau la valeur précédente 

(0,637 pour N = 4 000, légèrement inférieure pour N = 1 372).

On retiendra donc que la compacité maximale la plus usuelle correspond à un assemblage rapide, 

et qu’on la retrouve en limitant la durée des phases d’agitation.

Cette interprétation est confortée par l’absence ou la brièveté d’une telle phase de vibration dans 

les procédés pratiques d’assemblages tels que le dépôt sous gravité (pluviation) ou le damage par 

couches, ainsi que par les résultats déjà cités de [27], qui sont en très bon accord avec les valeurs 

de  obtenues en limitant la durée de l’agitation dans nos simulations. En effet, la méthode 

numérique employée par O’Hern et al. [27] est censée correspondre à la limite des compressions 

très rapides (l’énergie potentielle élastique, associée à la déformation des contacts intergranulaires 

dans une confi guration à volume imposé, est directement minimisée par un algorithme de descente 

du gradient, et la limite où le volume choisi donne des déformations nulles fournit la valeur de la 

compacité cherchée).

■ Rôle du frottement

La procédure d’assemblage précédente, qui consiste à faire décroître le volume de la cellule (pério-

dique) contenant les grains jusqu’à ce que le réseau des forces de contacts vienne équilibrer chacun 

des grains et contrebalancer la pression extérieurement appliquée, mise en œuvre en présence de 

frottement intergranulaire, conduit à des confi gurations mécaniquement équilibrées de compacité 

moindre [8-10]. De plus, en présence de frottement intergranulaire, on doit également noter que 

les grains peuvent être assemblés, pour les mêmes contraintes, dans des états assez différents, ce 

qui est bien sûr conforme à l’expérience, puisque l’on caractérise classiquement l’état d’un échan-

tillon de sable par sa compacité. La défi nition des états de compacité maximale donnée plus haut, 

comme états d’équilibre sous chargement isotrope de grains non frottants, conduit donc à consi-

dérer les procédés de compactage (vibration, cisaillement, lubrifi cation) comme destinés à limiter 

ou à circonvenir les effets du frottement dans les contacts. Pour des billes sphériques identiques, la 

compacité minimale que l’on peut atteindre dans une confi guration d’équilibre dépend de la valeur 

du coeffi cient de frottement et divers procédés peuvent conduire à des valeurs différentes, les plus 

basses étant de l’ordre de 0,56 à 0,58 avec des coeffi cients de frottement compris entre 0,2 et 0,5.

Signalons enfi n que la simulation numérique a permis de constater que la compacité et le nombre de 

coordination d’un assemblage de billes frottantes pouvaient varier indépendamment [4, 11].

■ Effet d’un cisaillement

Jusqu’ici on a considéré exclusivement des confi gurations isotropes. Il est toutefois possible d’ap-

pliquer à des assemblages de sphères sans frottement une contrainte de cisaillement, la confi -

guration restant en équilibre mécanique, avec des forces de contact normales qui équilibrent les 

forces extérieurement appliquées. On observe ainsi qu’il est possible d’appliquer des contraintes 

principales  jusqu’à atteindre des rapports  de 1,2 à 1,25, avec un modèle de 

sphères quasi-rigides. Lorsque le déviateur des contraintes est augmenté, par paliers, à partir d’une 

confi guration assemblée de façon isotrope, on constate que le système se déforme car le réseau 

des contacts se réajuste pour pouvoir supporter les nouvelles contraintes. À l’équilibre, on obtient 

une distribution des orientations des contacts anisotrope, avec un plus grand nombre de vecteurs 

normaux aux contacts parallèles à la direction principale majeure des contraintes. Il est intéressant 

de constater que les réarrangements se produisent sans changement notable de la compacité. Cette 

remarque permet donc de généraliser la défi nition adoptée pour un état de compacité maximale, en 

abandonnant la condition de contraintes isotropes : c’est simplement un état d’équilibre de grains 

rigides non frottants.
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Dans le langage de la mécanique des matériaux granulaires (ou des sols [3]), les assemblages de 

sphères non frottantes possèdent un angle de frottement interne faible (entre 5 et 6 degrés) mais non 

nul, mais sont dénués de dilatance. Pour un assemblage de grains parfaitement lubrifi és, et donc non 

frottants, la compacité  que l’on évalue en imposant une pression isotrope semble coïncider avec 

la « compacité critique », celle d’un échantillon continuellement cisaillé en régime quasi-statique. 

Cette valeur  pourrait donc en principe avoir une certaine pertinence pour l’étude de la rhéologie 

des pâtes, pour lesquelles on s’intéresse à la compacité associée à la divergence de la viscosité. Une 

étude expérimentale récente par une équipe du Laboratoire Navier [30] montre néanmoins que la 

viscosité diverge pour des compacités inférieures à , et il semble que le comportement rhéolo-

gique des pâtes granulaires soit infl uencé par l’état de surface des particules solides, que l’on ne peut 

pas considérer comme parfaitement lubrifi ées par le fl uide. Par ailleurs, il conviendrait de vérifi er 

si les assemblages de sphères polydispersées non frottantes sont également dépourvus de dilatance. 

Enfi n, il convient de rappeler que la compacité critique des grains secs dépend du coeffi cient de frot-

tement et est inférieure à la compacité maximale (elle vaut environ 0,595 pour les billes identiques 

lorsque le coeffi cient de frottement de contact vaut 0,3 [4]).

RÉSULTATS POUR LES MÉLANGES BINAIRES.

La simulation numérique de la compaction isotrope d’échantillons de billes de diamètre d et D = 3d 

a fourni les résultats du tableau 1. On y donne la liste des différentes séries d’échantillons prépa-

rées (et on rappelle aussi nos résultats obtenus avec les billes d’une seule taille).

Chaque famille de M confi gurations préparées dans le même état, au sens statistique, est désignée 

par un code dans lequel la lettre initiale est liée au nombre de grains, le chiffre qui vient en second 

est en correspondance avec la proportion p de grosses billes dans le mélange, et le dernier chiffre 

est, respectivement, 0 ou 1 selon que la phase de préparation par le processus LS (agitation et colli-

sions) est plutôt courte ou prolongée.

La fi gure 1 représente la vue en coupe d’un échantillon de 2 916 billes (dont 232 grosses) dans un 

état de maximum de la compacité, dont la fi gure 2 donne une vue en perspective. Les résultats de 

tableau 1
Différentes séries 

d’échantillons numériques. 
N est le nombre total de 

billes, p la proportion en 
volume de grosses billes, 

N
2
 leur nombre, M le 

nombre d’échantillons. 
L’étape LS donne lieu à 

n
coll

 collisions par particule 
pour compacter de Φ

0 
à 

Φ
1
, et la compacité fi nale 

obtenue, après l’étape de 
calcul par DM (à partir de 
Φ

1
) est <Φ*> en moyenne, 
l’écart-type étant ∆Φ*.

Code  p  N  N2  M  ncoll

A00  0 4000  0  5 0,45 0,45  50 0,637 0,001

A01  0 4000  0  5 0,05 0,632 5000 0,6423 0,0004

C00  0 1372  0 10 0,45 0,45  50 0,636 0,0012

C01  0 1372  0  8 0,05 0,59  80 0,636 0,001

B10 0,5 2916 104  5 0,05 0,68  860 0,7041 0,0003

B11 0,5 2916 104  5 0,05 0,70 4400 0,7070 0,00011

C10 0,5 1372  49 10 0,05 0,68  850 0,7034 0,00061

C11 0,5 1372  49 10 0,05 0,67 2200 0,7061 0,0007

D10 0,5  700  25 20 0,05 0,68  850 0,7034 0,0010

B20 0,7 2916 232  5 0,05 0,69  120 0,7134 0,001

B21 0,7 2916 232  3 0,05 0,69 1650 0,7164 0,0004

C20 0,7 1372 109 10 0,05 0,70  180 0,7207 0,00096

D20 0,7  704  56 20 0,05 0,69  270 0,7165 0,0012

D21 0,7  704  56 20 0,05 0,69  850 0,7185 0,0011

E20 0,7  352  28 40 0,05 0,69  100 0,7143 0,0020
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compacité sont présentés sur la fi gure 3, en fonction de N-1/2 (qui donne des variations à peu près 

linéaires de la moyenne et de l’écart-typex de  selon les équations (1) et (2)). Les tailles d’échan-

tillon étudiées sont tout aussi représentatives avec le mélange binaire que dans le cas monodispersé : 

on ne constate ni une dépendance en N, ni un niveau de fl uctuations de  sensiblement plus élevé 

dans le mélange. Suite à un réglage progressif des paramètres de l’étape LS, le nombre de collisions 

par particule lors de cette phase d’agitation et gonfl ement est variable entre les différentes séries 

d’échantillons (tableau 1). Toutefois, une tendance se dégage nettement : plus l’étape d’agitation 

se prolonge dans le processus d’assemblage, plus la compacité fi nale sera élevée, résultat encore 

analogue au cas monodispersé.

fi gure 1
Vue en coupe d’un 

échantillon avec 
N = 2 916 et N

2
 = 232. Les 

particules fi gurées en gris 
appartiennent à la cellule 
de base dans laquelle sont 
conduits les calculs, et qui 
se répète périodiquement.

fi gure 2
Vue en perspective d’un 

échantillon avec N = 2 916 
et N

2
 = 232.
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Au-delà de la seule valeur de la compacité, la simulation numérique fournit bien d’autres infor-

mations – en particulier lorsque l’on poursuit les calculs, comme cela fut fait ici, jusqu’à obtenir 

de bons états d’équilibre mécanique. On a ainsi accès au réseau des contacts et aux forces qu’ils 

transmettent.

Le tableau 2 donne les différents nombres de coordination, défi nis comme le nombre moyen de 

contacts d’une particule d’espèce i (i = 1 pour les petites, i = 2 pour les grosses) avec les particules 

d’espèce j. On a bien sûr :

 

Une certaine proportion x
0
 des N

1
 = N − N

2
 petites billes ne transmet aucune force, alors que toutes 

les grosses sont sollicitées, c’est-à-dire que les contraintes d’exclusion stérique sont actives. Le 

tableau 3 donne les valeurs en unités de Pd2, P étant la pression appliquée, des moyennes des forces 

F
ij
 et des rapports F(2)

ij
 entre écarts-types et moyennes (caractéristiques de la largeur de la distri-

bution ∆F/< F >) pour les contacts entre une bille d’espèce i et une autre d’espèce j. Ces données 

concernant le réseau des contacts, conformément aux résultats pour la compacité, indiquent que les 

assemblages granulaires obtenus, hormis une légère infl uence de la durée de la phase d’agitation, 

peuvent bien être considérés comme préparés dans le même état, dont l’échantillonnage statistique 

est satisfaisant, indépendamment de N dans l’intervalle étudié. Dans la limite des faibles pressions 

ou des billes rigides, on doit avoir [7] un nombre de coordination moyen z*, évalué avec les seules 

sphères qui portent des forces, égal à 6 :

  (3)

correspondant à un réseau de contacts isostatique. Les résultats du tableau 2 sont proches de satis-

faire cette condition, ce qui montre que la géométrie d’un assemblage de grains très faiblement 

déformables en contact est décrite avec précision.

Le tableau 2 montre aussi que les échantillons préparés avec une plus longue étape d’agitation 

(ceux dont le code se termine par « 1 » ; cf. tableau 1) et qui possèdent une compacité plus élevée 

présentent apparemment certaines prémices de ségrégation : le nombre de coordination z
22

 est plus 

fi gure 3
Compacité maximale 

représentée fonction de  
pour les valeurs p = 0,5 
et p = 0,7 étudiées (les 

barres d’erreurs s’étendent 
ici sur un écart-type de 

part et d’autre de la 
moyenne). Les codes 

indiqués sont ceux du 
tableau 1, et on a 

distingué par la couleur 
bleue les calculs pour 

lesquels une phase 
d’agitation prolongée a 

augmenté la valeur de la 
compacité fi nale, par 

comparaison aux processus 
d’assemblages rapides. 
Pour faire fi gurer sur le 

même graphe les résultats 
sur les systèmes 

monodispersés, on a 
décalé de 0,09 vers le haut 

les valeurs de Φ∗ 
correspondantes. Les 

résultats de [27], résumés 
par les relations (1) et (2), 

sont fi gurés en vert.

1
N
1
N
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grand, signe que les grosses particules se rassemblent. Il conviendrait bien sûr, au-delà de cette 

étude préliminaire, d’étudier ce phénomène de plus près et d’examiner si la tendance peut être 

poussée plus avant. Ces mêmes échantillons se distinguent également par un rôle accru des contacts 

entre gros grains dans la transmission des forces : la valeur de F22 (tableau 3) montre que ces 

contacts sont non seulement plus nombreux, mais aussi davantage sollicités.

La force normale de contact fkl entre le grain k et son voisin l, dans la présente approche, sont des 

grandeurs géométriques, des multiplicateurs de Lagrange associés à la contrainte d’impénétrabilité.

Si le rayon du grain k subit une petite variation , alors le volume V du système tout entier, si la 

liste des contacts reste inchangée (ce qui est toujours possible dans un échantillon fi ni avec un  

assez petit), varie au premier ordre de

  (4)

De plus, le rapport fkl/P dépend dans la limite des grains rigides de la seule géométrie du paquet de 

billes en contact, du fait de l’isostaticité de cette structure [7]. On conçoit donc que ce type de résultats 

tableau 2
Nombres de coordination 

et proportion x
0
  de petites 

billes inactives. Notations 
défi nies dans le texte.

Code z11 z12 z21 z22 z* x0 (%)

 A00 6,074  1,3

 B10 4,11 ± 0,03 0,877 ± 0,003 23,7 ± 0,8 2,34 ± 0,05 6,068  5,6

 B11 4,08 ± 0,04 0,876 ± 0,014 23,7 ± 0,1 2,48 ± 0,1 6,064  6,1

 C10 4,08 ± 0,06 0,890 ± 0,018 24,0 ± 0,5 2,24 ± 0,19 6,061  5,7

 C11 4,12 ± 0,04 0,885 ± 0,023 23,9 ± 0,6 2,47 ± 0,12 6,089  5,4

 D10 4,09 ± 0,05 0,884 ± 0,026 23,9 ± 0,7 2,30 ± 0,3 6,058  5,5

 B20 2,76 ± 0,05 1,35 ± 0,015 15,6 ± 0,2 3,33 ± 0,05 6,055 13,6

 B21 2,65 ± 0,05 1,33 ± 0,02 15,3 ± 0,2 3,73 ± 0,13 6,053 15,7

 C20 2,74 ± 0,04 1,37 ± 0,02 15,9 ± 0,2 3,44 ± 0,10 6,079 13,6

 D20 2,62 ± 0,07 1,38 ± 0,04 15,9 ± 0,5 3,48 ± 0,25 6,045 14,7

 D21 2,66 ± 0,11 1,37 ± 0,04 15,9 ± 0,4 3,53 ± 0,23 6,049 14,4

 E20 2,70 ± 0,15 1,36 ± 0,06 16 ± 0,7 3,37 ± 0,32 6,043 14,0

tableau 3
Forces moyennes, 

écart-type réduit des 
distributions de force, 

par familles de contacts. 
Notations défi nies 

dans le texte.

Code F11 F112 F22 F11
(2) F12

(2) F22
(2) 

B10 0,827 1,24 4,47 1,32 1,36 1,14

B11 0,780 1,24 4,88 1,36 1,41 1,15

C10 0,823 1,25 4,51 1,33 1,38 1,17

C11 0,796 1,21 4,80 1,34 1,40 1,15

D10 0,829 1,24 4,51 1,33 1,36 1,15

B20 0,960 1,43 4,93 1,45 1,51 1,18

B21 0,800 1,30 5,70 1,55 1,62 1,19

C20 0,951 1,41 4,81 1,44 1,49 1,19

D20 0,931 1,38 5,08 1,45 1,52 1,17

D21 0,901 1,36 5,18 1,45 1,52 1,18

E20 0,953 1,39 5,04 1,44 1,49 1,18
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puisse fournir des indications pour la recherche de granulométries optimales, l’équation (4) pouvant 

donner une idée de l’effet d’une variation de la distribution des diamètres. En particulier, il est 

bien sûr possible d’augmenter la taille des billes (au nombre de x0N1) qui ne portent aucune force. 

De telles approches discrètes permettraient d’explorer le sens précis de diverses notions (« classe 

granulaire dominante », « effet de paroi », « effet de desserrement »…) introduites dans le modèle 

de De Larrard [1], utilisé pour la formulation des ciments et dses bétons.

CONCLUSIONS ET PERSPECTIVES

L’étude d’assemblages de grains sphériques monodispersés ou en mélanges binaires par la simu-

lation numérique discrète a permis de proposer une défi nition pratique des états désordonnés de 

compacité maximale, comme états d’équilibre de grains rigides non frottants soumis à un état 

de contrainte isotrope. La compacité, pour le mélange binaire comme dans le cas monodispersé, 

augmente lorsque le processus d’assemblage comporte une phase d’agitation prolongée. Cet effet, 

bien que relativement modéré, se dégage nettement des marges d’incertitude statistiques. La compa-

cité maximale usuelle correspond alors à la limite des assemblages rapides, et un calcul d’ordre de 

grandeur permet de conclure que l’évolution vers la séparation ou l’ordre cristallin reste très faible 

dans le cas de l’assemblage par un procédé de laboratoire comme le dépôt gravitaire.

Cette défi nition de la compacité maximale peut fournir un angle d’approche pour l’étude des 

méthodes de compactage, qui apparaissent comme des procédés destinés à limiter les effets du 

frottement dans les contacts.

La méthode de simulation utilisée fournit de bons échantillons représentatifs pour les mélanges 

binaires considérés. L’estimation de la compacité au sens macroscopique de la limite des grands 

échantillons s’avère relativement aisée, même pour des échantillons de quelques centaines de 

grains, lorsque le nombre de gros grains est de l’ordre de la dizaine.

L’étude des états de compacité maximale peut être poursuivie et généralisée à diverses granulo-

métries, en particulier grâce aux performances croissantes des ordinateurs et au calcul parallèle 

(pour lequel le Laboratoire Navier s’est doté d’une machine spécifi que). Il sera particulièrement 

intéressant de relier certaines valeurs caractéristiques de la compacité (valeur maximale, valeur 

critique…) à diverses propriétés rhéologiques (dilatance, viscosité, frottement interne), éventuel-

lement couplées à la ségrégation, des assemblages de grains seuls ou en présence d’un fl uide. La 

simulation numérique des suspensions et des pâtes granulaires (suspensions très concentrées) est 

l’objet de recherches en cours au LMSGC (A. Hammouti, A. Lemaître, P.-E. Peyneau, J.-N. Roux) 

et au Centre de Nantes du LCPC (N. Roquet).
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