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Une méthode de simulation numérique des matériaux hétérogenes, fondée sur
la description des collisions multiples et la méthode des percussions (PM), est
présentée. Un matériau hétérogene est constitué d’'un ensemble de solides
rigides encore appelés grains, déformable en tant que systéme mécanique,
méme si chacune des particules qui le constituent est rigide. L'application du
principe des travaux virtuels a ce systeme permet d’obtenir les équations de son
évolution pour les collisions qui surviennent entre les grains et occasionnent des
discontinuités de vitesse dans le temps (partie irréguliere de I'évolution), ainsi que
pour les mouvements ou les vitesses sont continues et dérivables par rapport au
temps (partie réguliere de I'évolution). Les équations décrivant la partie réguliere
de I'évolution des grains sont discrétisées en temps selon la méthode des
percussions, qui consiste a exercer tous les efforts actifs dans le systeme sous
forme de percussions a intervalles de temps réguliers. L'évolution du systeme est
alors décrite par un formalisme unique constitué des équations de discontinuité
des vitesses, ce qui constitue la méthode A-CD? (Atomized stresses Contact
Dynamics respecting a Clausius-Duhem inequality). Cette méthode est appliquée
aux lois de comportement associées (frottement visqueux, etc.) et aux lois de
comportement non associées comme le frottement de Coulomb. Des exemples
de simulation numérique de systémes multi-solides représentant des matériaux
hétérogeénes sont présentés.

Numerical simulation of the behavior of heterogeneous materials
by a calculation method based on the description of collisions and
the fragmentation of efforts regular (method A-CD?)
ABSTRACT

A numerical simulation method for heterogeneous materials, based on a
description of multiple collisions and the percussion method (PM), will be
presented herein. A heterogeneous material is composed of a set of rigid solids,
still called grains, that may be deformed as a mechanical system, even if each
component particle indeed remains rigid. Application of the virtual work principle to
this system yields the evolution equations for the intergranular collisions that arise
and cause velocity discontinuities over time (i.e. the irregular part of evolution)
as well as for motions in which velocities are continuous and differentiable with
respect to time (the regular part of evolution). Equations describing the regular
part of grain evolution are discretized in time according to the percussion
method, which consists of applying all active stresses in the system in the form
of percussions at regular time intervals. System evolution is thus described by a
single formalism composed of velocity discontinuity equations, which gives rise to
the method known as A-CD2 (for Atomized stresses Contact Dynamics respecting
a Clausius-Duhem inequality). This method in turn is applied to both the
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INTRODUCTION

La simulation numérique d’un essai triaxial sur un matériau hétérogene ou celle de 1’éboulement d’un
milieu granulaire sont des sujets ouverts du génie civil qui ont en commun la question du contact
unilatéral entre plusieurs solides. LCapproche classique fondée sur la modélisation continue de la
mécanique des sols présente des insuffisances reconnues, spécialement lorsque les contraintes sont
importantes ou lorsque des ruptures se produisent au sein du matériau. Pour cette raison, de nombreux
auteurs ont proposé des approches discretes fondées sur la mécanique des milieux granulaires [1-7].
Lapproche présentée ici repose sur la description des contacts entre grains selon le principe des
travaux virtuels. Pour calculer les discontinuités de vitesse qui surviennent a I’occasion des contacts
entre particules, il n’est pas possible d’utiliser les équations usuelles du mouvement puisque la vitesse
n’est pas dérivable a ces instants. Lapplication du principe des travaux virtuels ainsi que 1’usage de
lois de comportement selon une formulation appropriée permettent d’obtenir les équations du mouve-
ment pour les instants de discontinuité des vitesses. Les lois de comportement utilisées peuvent étre
des lois associées ou non, ce qui est particulierement important dans le cas du frottement de Coulomb.
Lapproche présentée se révele aussi performante pour la simulation de systémes évoluant a partir
d’un état d’équilibre vers des équilibres infiniment proches puis une rupture (essais triaxiaux) que
pour la simulation de systéemes dynamiques (écoulements granulaires). La méthode A-CD? est issue
du principe plus général de I’atomisation des efforts réguliers [1, 8]. Pour cette raison, elle est appelée
« Atomized efforts Contact Dynamics respecting a Clausius-Duhem inequality » [8]. En outre, a partir
du formalisme de la méthode A-CD?, I’existence et I’unicité de la solution des équations d’évolution
ainsi qu’une inégalité de Clausius-Duhem apportant la preuve mathématique du caractére dissipatif de
I’évolution du systéme sont établies. Enfin, des simulations numériques bidimensionnelles viennent
illustrer I’approche proposée. Il s’agit de la simulation numérique de I’évolution de deux systémes
multi-particules : la premiére évolution est dynamique (écoulement granulaire) et la seconde est une
évolution a partir d’un état d’équilibre vers une rupture (essai biaxial). Des résultats de simulations
tridimensionnelles sont présentés dans les références [1, 9, 10].

LE MODELE DE COLLISION ENTRE GRAINS

La modélisation mécanique des collisions entre particules est présentée a partir de la description de
la collision entre un point matériel et un plan rigide et fixe. Ce systéme simplifié permet de réduire
le nombre de degrés de liberté et de se focaliser sur le phénomene collisionnel. Les équations du
mouvement sont étudiées sur un intervalle de temps [t , t,] (figure 1) a I’intérieur duquel se trouve

figure 1
Collision instantanée entre —int
un point et un plan rigide

et fixe.
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I’instant 7 auquel survient une collision instantanée. La collision est supposée instantanée, ce qui
a pour effet de concentrer toutes les forces de contact dans le temps pour les exercer a I’instant de
la collision. Leffort ainsi obtenu est une percussion de contact [1, 8]. La vitesse du point U est
discontinue a I’instant de collision 7. Ses limites a gauche et a droite sont désignées par les expo-
sants - et +.

B Le principe des travaux virtuels

Les efforts intérieurs (les forces et les percussions) sont définis a partir de leur travail. Le principe
des travaux virtuels conduit a choisir comme travail virtuel des efforts intérieurs 1’expression [1,
10-12] :

th G+

2, —>int +V ( te )

W (o 0) T ey ) YV 1)

1)
t) 2

%
ou V estune vitesse virtuelle du point et ¢, I’instant virtuel de collision. En particulier, I’équation (1)
—int V™ +V*
permet d’établir la dualité entre la percussion intérieure P et la quantité — qui peut de
ce fait étre désignée comme la vitesse de déformation a I’instant de la collision du systéme constitué
du point et du plan.

Le travail virtuel des efforts d’accélération est :

_\ 2 dU(x) - - . V™ (t.)+ V' (t
Wacc(tl,t2,tc,v)=tj1n di )V(T)d‘r+m(U+(tc)—U (tc)) (°)2 (te) @)
1
ou m est la masse du point et U sa vitesse réelle [1, 11, 12].
Enfin, le travail virtuel d’une percussion extérieure au systeme s’écrit :
o\ . - V™ (t,)+V*
W (b, 1,1, V) = [F (1) V(1) d+P™ (1) (C); (te) ©)
t

Le principe des travaux virtuels implique que, pour toute vitesse virtuelle V et tout instant t,ona:
W (10,16, V) = W™ (1,1, 13, V) + W (1, 15,1, V) @)

Selon ce principe, les équations du mouvement du point dans I’intervalle [7,,,] sont :

m (;—U =" 1 7 presque partout ()
T
et
m (U* -U” ) =—P™ £ P! partout (6)

La percussion intérieure pint présente dans 1’équation (6) est I’effort intérieur au systéme point-

plan qui agit a I’instant de collision. La dualité au sens du travail des efforts intérieurs entre pint

Vo4Vt . . . =i .
et — invite & exprimer les lois de comportement par I’expression de P™ en fonction de
U +U"

, conformément aux usages de la mécanique.

M Les lois de comportement

Les lois de comportement traduisent les différents comportements collisionnels des matériaux et
assurent la non-interpénétration des différentes particules lors d’une collision. Afin de distinguer
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ces deux aspects, la percussion intérieure est divisée en deux parties : la percussion dissipative pd
qui traduit les différents comportements collisionnels des matériaux et la percussion réactive P

qui assure la non-interpénétration des particules, soit :
I“)mt _ 13d +13reac @)

La percussion dissipative décrit les interactions (que 1’on exige dissipatives) entre les particules.
S’il s’agit d’une loi associée, elle est exprimée a 1’aide d’un pseudopotentiel de dissipation @4, qui
est une fonction positive, convexe et nulle a I’origine [1, 2, 13-16] :

I
pd e o % ®)

ou I’opérateur 0 désigne le sous-différentiel. Le cas des lois non associées comme le frottement de
Coulomb est abordé dans la partie consacrée aux collisions simultanées de N solides.

La percussion réactive P

est la réaction a la condition de non-interpénétration qui s’écrit
UE >( avec UIJ(I =U"-N (¢f figure 1). Cette percussion est égale a 0 si UE > 0, est non nulle si
Uy =0 etassure que la condition UY; <0 n’est pas vérifiée. Ces propriétés peuvent étre énoncées
a I’aide des fonctions indicatrices de la maniére suivante [1, 2, 13] :

U +U0 - Un

l3reac (S GIK N ,K = T’+OO (9)

Comme K est un ensemble convexe contenant I’origine, I’indicatrice /, est un pseudopotentiel de
dissipation [14-16].

La percussion intérieure peut ainsi étre exprimée en fonction d’un seul pseudopotentiel :

Ut +U"

P € oD avec @ =@ + 1 (10)

c’est-a-dire que la percussion intérieure dérive d’un pseudopotentiel de dissipation.

COLLISION SIMULTANEE DE N SOLIDES

La théorie des collisions, présentée a partir du cas simple que constitue la collision d’un point et
d’un plan, peut étre généralisée a la collision simultanée de N solides. Les contacts entre solides
sont supposés ponctuels. On considere N solides qui s’entrechoquent a I’instant 7. Le solide i a
comme masse m,, pour centre de gravit¢ G, et comme tenseur d’inertie /.. Le k-iéme contact entre
le solide i et le solide j se produit au point A;;y -S; ; est 'ensemble des points de contact entre

les solides i et j. Si ces deux solides ne sont pas en contact, Sl./. n’est pas nécessairement vide. En
effet, des interactions instantanées a distance entre des solides qui ne se touchent pas peuvent étre
ajoutées au modele [1]. Dans ce cas, Sl./, est non vide méme si les solides ne se touchent pas. Cette
hypothése n’est pas envisagée ici.

La percussion Pi”jtk s’exerce au point de contact A ;| -V; est la vitesse virtuelle du centre de
gravité G et @; est la vitesse virtuelle de rotation du solide i. Des percussions extérieures P sont
exercées aux points B, du solide i. S; contient les points B, auxquels des percussions extérieures

sont appliquées au solide i. En définissant le vecteur V= (Vi ,0; ), les vitesses relatives des solides

aux points de contact 4, sont :

i

Dj (V’Ai,j,k) =V+; AGiA, ‘( Vi+ 65 G'Ai,j,k) (1)
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et les vitesses aux points B, du solide i sont :

i(\A/,Bi’l) =\7i +@; AG:B.

14,1

st}

(12)

Dans la suite, on se limite a considérer le systéme constitué des N solides a I’instant de la collision.
En notant U;, €; les vitesses du solide i (V;, @; étant ses vitesses virtuelles) le principe des

travaux virtuels implique :

SN (Ve U++U.‘] S [mﬂ» Q+Q]
VV,Z m U _U 1 11 1 +1. Q+—Q 1 1 1 1
i;]{ 1( i i ) [ B 5 I( i i ) B >
N-1 N 1/~ n _ ~ 1/= ~ — A
+ Z Z Pllljltk {E(DIJ(V+,Ai,j,k)+Di,J (V ’Ai,j,k))_E(DIJ(U+,A1Jk)+D1J(U ’Ai,j,k))}
i=1 J:1+1Ai,jkesi’j

(13)

ou U= (ﬁi,ﬁi) et V= (\"/i,a)i) sont les vitesses réelles et virtuelles du systéme. Cette expres-

sion conduit aux équations du mouvement du systéme a 1’instant de la collision. Il convient de la
compléter par des lois de comportement afin d’obtenir les équations de la collision qui permettent

de calculer les vitesses U™ du systéme apres la collision.

M Lois de comportement

> Lois de comportement associées
Les lois de comportement associées sont exprimées a 1’aide de pseudopotentiels de dissipation :

Di’j(U+,Ai’j,k) DLJ-(U*,ALJ-,k)

Sint
Pk € 0P ji (14)

®; ;x est un pseudopotentiel de dissipation. Il est la somme d’un pseudopotentiel décrivant le
comportement collisionnel des solides i et j et de la fonction indicatrice T :D — I (D-N)

qui assure la non-interpénétration des deux solides. Ce dernier terme requiert la définition d’une
normale au point de contact. A cette fin, il suffit que I’un des deux solides soit régulier au point de
contact. Le cas des collisions pointe-pointe traité dans [14] n’est pas envisagé ici. En substituant la
relation (14) dans (13) et en appliquant I’inégalité du sous-différentiel [2], on obtient :

N VAR ¥/ & SR & b =+ == At .-

~ - - Vi +Ve U +U; ~ ~ ®; +0; Qi +Q;

vV, Y sm;(Uf + U7 [ L1 1 l]+1i QF -QF [ L1 1 ']
N-1 N

Y YNy {qai,j,kG(BLJ(\7+,ALM)+"i,j(v—,ALJ,k))j_qai,j’kG(Di’j(o+,AiJ’k)+

i=1 j=itl A |, €S |

s w3 (L0 B (0 0 s

i=1B; €S;
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Comme chaque fonction
Voo, (Di,j (VA )) - - (vi +0; AGIA -(v. +OAGA, )j (16)
est un pseudopotentiel de dissipation, la fonction
. N-1 N ~ . .
Vo Y X Pk (Di,j (VA )) =o(V) (17)
i=1 j=i+l A 4 €S |
est également un pseudopotentiel de dissipation.

La définition du produit scalaire :
A A N — —
<U,V> =Z{miUi * Vi +IiQi CT)I} (18)
i=l1

permet de réécrire 1’inégalité (15)

NN ~ U+ 0 A 0t +0~
ORI R Lo R A Sl S +o(V)-o U +U 15y (19)
2 2
pour tout V appartenant & R, o0 7 est un élément de R défini par
N

<Te’“,\7> = kz (Ry Vi + M -y | (20)
=1

Rk est la résultante des percussions extérieures appliquées au solide & et I\7Ik leur moment par
rapport au centre de gravité de k.

Dans RY muni du produit scalaire (.,.) I’inégalité (19) est équivalente & :

NP
_(U+ 0 _Text)e aq{%J (1)
NP
ce qui se réduit, en notant X = %, a:
207 + T € 2X +00(X) (22)
Enfin, les formulations (19) et (22) sont équivalentes au probleme de minimisation
lnf{<Y,Y>+cD(Y) —<2U‘ +TeXt,Y>‘Y c RGN} 23)

puisque I’argument X qui réalise le minimum vérifie la condition de Karush-Kuhn-Tucker [16] :
0(6N)e2X +0d(X)-20" - T (24)
c¢’est-a-dire I’inclusion (22), ou 0(6N) désigne 1’élément nul de RV,

Lexistence et I"unicité de la solution dans le cas ou des lois de comportement associées sont utili-
sées constituent le théoréme suivant :

Théoréme 1 : Si toutes les lois de comportement dérivent d’un pseudopotentiel de dissipation, la

collision simultanée de N solides rigides admet une solution unique U,

La démonstration est une conséquence de la forte convexité de la fonction

Yo F(Y) = (YY) + 0 (Y) (207 T, Y) (25)
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Elle repose sur les majorations suivantes :

>

(XY X)L o))

>

(0¥ X < () e 200, ¥)- (X VX)) @

>

<X+Y X+Y>S(X,X>+<Y’Y>_E<X_Y’X_Y> (28)
2 2 2 8

Par ailleurs :

Q(X;Y)SCD(X);(D(Y) 29)

puisque @ est un pseudopotentiel de dissipation.

Enfin

) —<20‘ +TeXt,X>—<2U_ +Te’“,Y>
—<2U" +Text,X;Y>= (30)

2

On déduit des relations (28), (29) et (30) que, dans R®Y muni du produit scalaire <,> et de la norme
associée :

.’F(X;Yjsf(X);f(Y)—§||X—Y||2 31)

Ainsi, F est fortement convexe puisqu’elle est a- convexe (a=2) [1, 16]. De telles fonctions admet-
tent un minimum unique sur (RéN ; <., >) qui est un espace de Hilbert. Ceci démontre 1’existence et

I’unicité de la solution au probléme (23).

Les lois de comportement (14) dérivant d’un pseudopotentiel de dissipation, I’inégalité du sous-
différentiel fournit :

>0 (32)

N,
pour chaque A0 d’ou :

N-1 N , D . (U"A . )+D; (U, A, .
P D I i I’J’k)z a0 A >0 (33)

i=] j=i+lA; €S|

Si on ne tient pas compte de la variation instantanée de température a I’instant de la collision, cette
inégalité constitue une inégalité de Clausius-Duhem pour la collision [17]. Elle prouve que I’évolu-
tion est dissipative, c’est-a-dire qu’en 1’absence d’effort extérieur exercé sur le systéme, son énergie
cinétique diminue :

(34)
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> Lois de comportement non associées
Précédemment, les lois de comportement ont été considérées comme associées, c’est-a-dire déri-

vant d’un pseudopotentiel de dissipation. Pourtant, certains comportements n’entrent pas dans ce
cadre ; ¢’est le cas du frottement de Coulomb. Si P est la percussion exercée en un point de contact
ot la normale est N, sa composante tangentielle f’T appartenant au plan perpendiculaire & N et

sa composante normale Py =P-N vérifient :

”}—)TH <uPy avec p>0 et
si HISTH< pPy alors Xt =0 (35)

si HﬁTH:uPN alors 3\ tel que Xt =APT

Ce comportement ne peut pas étre exprimé par une loi associée. On établit néanmoins que, dans
le cas du frottement de Coulomb, la collision est toujours dissipative et qu’elle admet une solution
unique a condition que les coefficients de frottement soient petits.

En ce qui concerne le caractere dissipatif, il suffit de remarquer que les percussions Pi”jtk exprimées

selon la loi de Coulomb vérifient I’inégalité (32). Ceci implique également les inégalités (33) et (34),
démontrant le caractere dissipatif de la collision.

La question de I’existence et de I’unicité de la solution est traitée a partir d’une suite dont les termes
sont les solutions du probléme obtenu lorsque la loi de frottement utilisée est une loi de Tresca qui
présente la particularité d’avoir un seuil de glissement indépendant de I’effort normal et donc d’étre
une loi associée. Il a été montré que cette suite de solutions converge vers la solution unique du
probléme avec frottement de Coulomb si les coefficients de frottement sont petits [1].

Si, en chaque contact, la percussion normale P, est connue ou fixée, la percussion tangentielle
dérive d’un pseudopotentiel de dissipation :

4 _

avec Op

Vi + Vg Vi + Vg - . . . .
M] =uPy % , o Vr estla vitesse relative tangentielle des deux solides

au point de contact. La solution X du probléme pour lequel les percussions normales sont connues

ou fixées est I’argument qui réalise le minimum de la fonction fortement convexe :

X = arg min{<Y,Y)+q>(f> N (X),Y)—<2fj_ +TeX‘,Y> ‘Y c R6N} 37)

dans laquelle le vecteur ISN (X) contient les valeurs de P, pour chaque contact et le pseudopotentiel

(D(f’N (X),Y) est la somme sur tous les contacts des termes :

Vi +Vr

2 (38)

uPy

Le probléme avec frottement de Coulomb est ainsi traité par le processus itératif qui consiste a
résoudre, a chaque étape, un probléme avec loi de Tresca ; les seuils de glissement constants utilisés
a I’étape n + I sont les percussions normales obtenues a I’étape » multipliées par le coefficient de
frottement :

X“” = argmin {<Y’Y>+(D(]3N (Xn ),Y)—<2U_ +TeXt,Y> ‘Y e R6N} (39)
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Lexistence et I’unicité de la solution sont acquises dans le cas ou la suite X, converge. On montre
qu’il existe deux réels positifs M et M’, dépendant de la taille des grains, tels que, dans le cas de NC
contacts simultanés, si I’inégalité

n< - (40)
16*NC2 *M(1+M')*

est vérifiée, il existe alors une unique solution a la collision avec frottement de Coulomb [1]. Si les
coefficients de frottement sont différents en chaque contact, on peut appliquer cette inégalité au plus
grand d’entre eux.

METHODE NUMERIQUE

Une théorie des collisions instantanées de plusieurs solides a été présentée. On s’intéresse main-
tenant a I’évolution des systemes multi-particules dans le temps. La méthode proposée permet de
calculer une solution approchée de 1’évolution des systémes de N particules.

Soit f, 1’élément de R contenant les résultantes des forces intérieures (par exemple, des forces

de contact) exercées sur chaque particule et leurs moments. Les coordonnées 6(i —1)+1,2,3 sont

les trois composantes de la résultante des forces exercées sur la particule 7 et les coordonnées

6(1 - l) +4,5,6 sont les trois composantes de leur moment par rapport au centre de gravité de i.

De méme, o contient les résultantes des forces extérieures (par exemple, du poids) exercées sur
chaque partlcule et leurs moments. P™ et P** sont les éléments de R contenant les résultantes des
percussions intérieures et extérieures exercées sur chaque particule ainsi que leurs moments par
rapport aux centres de gravité des particules. Les équations du mouvement du systéme sont données

sur un intervalle de temps quelconque par :
(Z—I‘f = —fint 4 £XU resque partout 1)
41
Ut -U™ =-P™ 4+ P partout

ou U est le vecteur qui contient les vitesses de toutes les particules.

Entre I’instant 0 et I’instant ¢, les efforts cumulés R™ et R* sont :

R™ (1) = tJ.fim (t)dt+ t.[z P (¢ )8y (t)de

t

= £ (1) dr+ 3P () H(t—t;), et
0 t

t

t
R (1) = J.feXt(t)dr+ _[Z:Pext (tj>8tj (t)dr
0 0t 42)

_jfe’“ )dr+ Y P (1) H(t-1;)

0 t;

ou 7, et 7 sont les instants auxquels des percussions intéricures et extérieures sont exercées. H est la
fonction d’Heaviside et § la distribution de Dirac. Les équations du mouvement s’écrivent, au sens
des mesures,

dV (t)=—dR™ (1) + dR (1) (43)

en fonction des efforts cumulés.
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La méthode des percussions (PM) consiste a approcher les éléments réguliers de R, et de R
par des percussions, ce qui est appelé /’atomisation des efforts. Une évolution approchée est alors
obtenue, qui se caractérise par une succession de discontinuités de vitesse séparées par des évolu-
tions a vitesse constante. Lorsqu’elle est appliquée a des systemes de solides, cette méthode porte
le nom de méthode A-CD?.

D’un point de vue pratique, ’application de la méthode A-CD? consiste :

T
] de longueur A, =—. Sur chacun
n

— a découper la durée de simulation [0,7] en n intervalles [z,

de ces intervalles, les efforts réguliers (forces et moments) sont atomisés, ¢’est-a-dire remplacés par
. (s e 1
une percussion exercée a ’instant 0, =ty +5An ;

— aconsidérer que tous les efforts irréguliers (percussions exercées a 1’occasion des collisions) que

subit le systeme pendant I’intervalle de temps [¢,,,,,] sont exercés a I’instant 0,.

Il en découle que les vitesses sont discontinues aux instants 0, ou des percussions sont exercées et
qu’elles sont constantes partout ailleurs. Les percussions exercées aux instants 0, sont les percus-
sions résultant de I’atomisation des efforts réguliers (forces et moments) qui s’exercent pendant
[£,t,.,] ainsi que les percussions dues aux collisions survenant pendant [7,, . 1.

M L'atomisation des efforts réguliers

Latomisation d’une force f sur I’intervalle [z, ] consiste a la remplacer par une percussion P

exercee a I’instant 0,. Dans le cas le plus général, f'dépend d’une variable y qui dépend du temps.
Lapproximation utilisée part de la constatation du fait que :

ey @)= (-0 y+(e“)?(e“) “

ainsi, f'est remplacée par la percussion :

p() =i (ek);y_ G I3, (1) (@5)

qui est la dérivée de

H(t-6y) (46)

par rapport au temps.

En pratique, on rencontre le plus souvent I’une des quatre situations suivantes : les forces constantes,
celles qui dépendent du temps (la fonction y est ’identité), celles qui dépendent des positions (la

fonction y désigne les positions) et celles qui dépendent des vitesses (la fonction y désigne les

vitesses).

Une force constante f; est remplacée par une percussion d’intensité¢ fyA, . Par exemple I’action du

ot
poids, — j gdt, est remplacée par celle de la percussion
ty

(0,0,—gA,,0,0,0,.......,0,0,~gA,,,0,0,0........,0,0,—gA,, ,0,0,0) (47)

exercée a I’instant 0,
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Une force f{1) exercée sur le systeme pendant I'intervalle [z, ], est remplacée par la percussion

d’intensité A (0 ) exercée a I’instant ,.

Une force f(X(t)) dépendant des positions X des éléments du systéme, exercée sur le systeme

pendant Dintervalle 7, ], est remplacée par une percussion d’intensité A f(X(0y)) exercée a
X (0)+ X (By)

2

si deux points du systéme sont liés par une liaison élastique dont la force de rappel dépend d’un

I’instant 0,. En effet, les positions étant des fonctions continues,

= X(0}). Ainsi,

allongement x(7) (qui est une différence de positions) a I’instant ¢, le module de la force de rappel

étant k|x(t)

, cette force est alors remplacée par une percussion d’intensité A,k ’x(Gk )‘ exercée
al'instant O,.
Une force f(V(t))dépendant des vitesses V' du systéme, exercée sur le systéme pendant ’intervalle

VT (0)+ V()
2

[t,.1,.,] est remplacée par une percussion d’intensité A f( ) exercée a I’instant 0,

puisque les vitesses sont discontinues a I’instant 0,.

M Algorithme de résolution des équations obtenues

La méthode conduit a des vitesses qui sont des fonctions en escalier : elles subissent des discon-

tinuités aux instants 6, et sont constantes partout ailleurs. Ainsi, sur |8y ,6) [, les vitesses sont

constantes et chaque particule se déplace avec un vecteur vitesse et un vecteur vitesse de rotation
constants. La maniere de procéder a ces déplacements n’est pas discutée ici. En revanche, la maniére
de calculer les discontinuités de vitesse qui surviennent aux instants 0, nécessite un développement.
On peut tout d’abord remarquer que, grace a la maniere dont est réalisée 1’atomisation des efforts
réguliers (équation (45)), les équations qui régissent ces discontinuités sont de la méme forme que
I’équation (13) qui décrit les collisions simultanées de N solides.

> Cas ou les lois de comportement dérivent d’'un pseudopotentiel

Les percussions qui sont responsables de la discontinuité de vitesse a I’instant 0, proviennent
soit des collisions survenant sur I’intervalle [#,z,,,], soit de I’atomisation des efforts réguliers sur
cet intervalle. Dans 1’hypothése ou ces percussions dérivent d’un pseudopotentiel, le probleme a

résoudre est formulé selon les trois manicres équivalentes :

+ - + -
wv (Ut —u ey XY +c1>(\/)—<1>[7U U ]zo

2 2
- +
2UT+ T €2X+00(X) avec X = % (48)
infy,_yox {(Y,Y) +o(Y)-(20" +Te’“,Y>}
chacune des percussions dérivant du pseudopotentiel
X - q)i,j,k (Dl,_] (X’Ai,j,k )), (49)
La fonction
N-1 N
X->Y X X cDi,j,k(Di,j<X,Ai,j,k))=cD(X) (50)
i=1 jeitl A {4 €S, ;

est également un pseudopotentiel et peut étre séparé en deux parties :

®(X) =0 (X)+ 0" (X) (51)
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®"(X) est la somme des fonctions indicatrices assurant la non-interpénétration aux points de

contact qui sont pour I’occasion renommeés B, (1 =1, p) (p étant le nombre de contacts) :

i=1

o' (X)= il{dl[v}ﬂ{ (91(X)).d;(X)=D;;(X,B))-N; I=1p (52)

o! (X) est la somme de tous les pseudopotentiels de dissipation associés a la partie dissipative des
percussions. Dans la suite, elle sera supposée différentiable.

L’équation qui gouverne la discontinuité de vitesse est alors équivalente a la minimisation de :
F(Y)=(Y.Y)+O(Y)~(2V 4P, Y ) avec Y RN (53)
ou encore de

F(Y)=(Y,Y)+ o (Y)—<2V‘ +Pe,Y> (54)

avec YeQ,Q:{YeR6N/(p1 (Y):—dl(Y)+d1[V7]sO l=1,p}

P est défini de la méme maniere que 7% par la relation (20). 7% contient les résultantes et les
moments des percussions extérieures appliquées au systéme a 1’instant d’une collision. 7 contient
les résultantes et les moments des percussions extérieures exercées sur le systéme pendant I’inter-

valle [ ] ainsi que ceux des percussions issues de 1’atomisation des forces qui ne dépendent pas

tk’tkﬂ
des vitesses.

La minimisation de cette fonction est équivalente a la recherche de point-selle du Lagrangien qui
lui est associé [1] :

p
L(Y,n) e QxRE - F(Y)+ 2 e (Y) (55)
1=1

Le domaine Q ainsi que les fonctions F et ¢ (Y) sont convexes. Aussi, si X est une solution, il

existe au moins un A dans R¥ tel que (X, 1) soit un point-selle de L [13, 16] :

L(X,A)= inf sup L(Y,u)=sup inf L(Y,un) (56)
YeR™N | cRP weRP YeRN

Ceci conduit a considérer le probléme dual (Q) qui est la maximisation de :

G(u)= inf L(Y,u) avec peRP (57)
YeR®N

La résolution du probléme consiste a appliquer au probléme dual une méthode de gradient a pas
fixe suivie d’une projection sur le domaine d’optimisation. Cette approche est appelée méthode
d’Uzawa [1].

En un point n e R?, on note Xu 1’élément qui minimise L(Y, p). Ainsi
p
G(u)=L(XH,M)=}'(Xu)+2u1(pl(X“) (58)
1=1

ce qui permet de remarquer que V(G ( u))l =@ (XH) est le gradient de G(p). Le pas est noté p. La

projection sur le domaine R se fait aisément :

max{O,p(pl(Xu)}, (I=1p) (59)
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Lalgorithme peut étre résumé comme suit :
1. n® eRP est choisi a I’étape 0.

. p
2. A chaque itération n, X, =argmin {f(Y) +> e (Y),Ye RON } est calculé
1=1

3. ™! est actualisé selon p?” = max {0, Py (X, )}

Cet algorithme permet de remplacer le probléme initial de minimisation sous contrainte
argmin{(Y,Y>+ch(Y)—<2V‘ +Pe,Y>,YeQ} (60)

par une suite de problémes de minimisation sans contrainte

M=

arg min {f(Y)+ nre(Y),Ye RéN} (61)

=1

Les questions liées a la convergence en fonction de la valeur du pas p sont traitées dans la réfé-
rence [18].

> Cas du frottement de Coulomb
La résolution du probléme avec frottement de Coulomb se fait selon le méme principe que celui

utilisé pour démontrer I’existence et I’unicité de la solution. En partant d’une premiere approxi-
mation des percussions normales, G, € RP, la solution correspondant a la loi de Tresca (dont les

seuils de glissement sont calculés a partir des €léments de G,) est calculée :
Xg, = argmin {(Y,Y) +®(Gg,Y)- <2U‘ + Pe’“,Y> ‘Y e RéN} (62)

Le pseudopotentiel CD(GO,Y) est défini par I’équation (38) et le théoréme I permet de conclure a
I’existence et I'unicité de XGo .

La résolution de ce probleme permet, a partir des percussions normales,

N . - pext <
k-NAi’j’k_Di’j(zU +P —2XGO,Ai’j’k)-NA,

i.j.k

(63)

Gy _ pint
P - - PAi»L

Nl, j.k
de réactualiser les seuils de glissement pour I’itération suivante.

Chacun des problémes avec loi de Tresca est un probléme de minimisation sous contraintes. La
méthode utilisée pour le résoudre est a priori celle qui est décrite dans la partie précédente. Cela
conduirait & un algorithme constitué de deux boucles imbriquées de minimisations, une pour 1’ac-
tualisation des seuils de glissement et I’autre constituée de la suite de problémes de minimisation
sous contraintes issue de la méthode d’Uzawa, ce qui conduirait a des temps de calcul prohibitifs.
La solution originale proposée ici consiste a ne faire qu’une seule boucle dans laquelle les seuils
de glissement ainsi que les valeurs des réactions aux contraintes sont réactualisés simultanément.
Afin d’alléger les écritures, la méthode est décrite pour le cas bidimensionnel, ce qui a I’avantage
de réduire la tangente au contact a une seule dimension.

Le probleme (54) est d’abord modifi¢ par ’ajout de contraintes de non-glissement a chaque
contact :

W(X)=0.5(X)=D;;(X.B;): Ty I=Lp (64)
ou Tl est la direction tangente au contact /. On obtient ainsi le probléme :

F(Y)=(Y.Y)+ 0! ()= (2v+P°Y) (65)
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cpl(Y):—dl(Y)+d][V7]so I=1p
ol YeQ,Q=YeRN/

Y1 (Y)=-s1(Y)+s [V—z_]=0 1=1,p

Les nouvelles contraintes ont pour effet de forcer la solution a se trouver dans la branche I de
la figure 2, pour cette premicre étape. Ce moyen de procéder est parfois désigné sous le terme
de méthode des multiplicateurs. Le théoréme 1 indique que ce probléme posséde une solution
unique.

La solution est calculée par la méthode précédemment décrite, modifiée pour tenir compte des
contraintes supplémentaires d’égalité que comporte la relation (65). La résolution consiste a recher-
cher le point-selle du Lagrangien :

p P
L(Y,1.6) e xRE - F(Y)+ 2 1oy (Y)+ 26w (Y) (66)
1=1 1=1

Cette recherche est effectuée en notant g le pas correspondant aux contraintes d’inégalité et g celui
correspondant aux contraintes d’égalité :

1. p® eRP et % e RP sont choisis a I’étape 0.
. . S L 6N
2. A chaque étape n, X, =argmin{ F (Y)+ Y pl'o (Y)+X. &y (Y), YeR est calculé.
1=1 1=1

3. u"! est réactualisé pf*! = max {O,p(pl (Xun )} .

4. " est réactualisé ¢! = g\ul(Xgn )

Dans ce qui préceéde, la maniere de résoudre un probléme de minimisation sans contrainte n’a pas
été discutée. Cette étape ne pose pas de difficulté car les fonctions a minimiser sont fortement
convexes. Il en résulte que les méthodes newtoniennes, par exemple la méthode Broyden-Fletcher-
Goldfarb-Shanno dite BFGS [16], et les méthodes de gradient conjugué convergent facilement vers
la solution.

figure 2
Loi de frottement
de Tresca de seuil Q. P g

Branche 11

Branche 1
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Les vecteurs et A contiennent les multiplicateurs de Lagrange associés aux contraintes , et ¢,.
Leurs composantes sont les valeurs de la percussion tangenticlle et de la percussion normale a

chaque contact. Aussi, ces termes sont-ils comparés a I’issue du calcul précédent :

{Si ’él‘ < u|7»1| alors la contrainte X = 0 est justifiée au contact 1 selon la relation (35)

si [&;|>p|r| alors la contrainte X, = 0 est impropre au contact 1 selon la relation (35)

Si [&1]> n|
trouve dans la branche II de la figure 2.

, la condition de non-glissement ne peut étre maintenue en ce contact et la solution se

Pour 1’étape suivante, le probléme est reformulé en tenant compte de la valeur des percussions

obtenues a chaque contact.

Pour chaque contact i ou la condition de non-glissement a provoqué une percussion tangentielle
plus importante que ce que permet la loi de comportement (35), la contrainte correspondante , est
abandonnée. Les percussions tangentielles en ces points ne pouvant plus étre obtenues comme réac-
tions a cette contrainte, il faut ajouter a la fonction a minimiser le pseudopotentiel correspondant a

la loi de frottement, ¢’est-a-dire le terme :

o ()= > kil ‘YTi H (68)

Les contacts pour lesquels les contraintes , sont maintenues sont renumeérotés de 1 a g.

Une variante consiste a étendre cette somme a tous les contacts. Le fait d’ajouter le terme HYT| ”

correspondant a un contact / ou la contrainte \, est maintenue ne modifie pas la solution. En
revanche, ce terme accélere la convergence car il constitue une fonction de pénalisation associée a

la contrainte v, .

La seconde étape de la résolution consiste alors en la minimisation de la fonction :

T(V)=(Y.Y)+ 0% (V) + 0 (Y)-(2v" +P,Y) (69)

(p](Y):—dl(Y)+d][V7]SO I=Lp
pour YeY,Y=Y eR®N/

Wi (Y)=-si(Y)+s; [7]=0 ji=Lp

La minimisation du probleme (69) est effectuée de la méme manicre que celle de (65) puisque la
fonction a minimiser ne différe que par le terme o4 (Y) et le domaine de minimisation que par

les contraintes y, qui ont été supprimées.

1. n%eRP et £° eRY sont choisis & I’étape 0

M

2. A chaque étape n, X, =argmin{J (Y)+

1=1

q
mrop(Y)+ ZC?W_] (Y),Ye RON L est calculé
i=1

3 Hn+l est réactualisé u“” = max{(), PP (Xn )}

4. ™ est réactualisé C?” =py;(X,)
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tableau 1
Paramétres utilisés
pour la simulation

numérique de
I’éboulement.

A TP’issue de cette étape, il faut vérifier si, pour chaque contact, la loi de comportement est
respectée.

Pour les contacts auxquels une contrainte de non-glissement a été associée, il faut vérifier que la

percussion tangentielle |¢;| n’excede pas le seuil de glissement || permis par la loi de Coulomb.

Si |G| > A

, 1l faut procéder comme précédemment et refaire un nouveau calcul.

Pour les contacts auxquels la contrainte de non-glissement a été retirée, il convient de vérifier que
la vitesse de glissement n’est pas nulle. Si c’est le cas, I’hypothese de différentiabilité de la fonction

a minimiser n’est plus vérifiée par la solution obtenue a cause du terme o (Y), ce qui nécessite
de reprendre le calcul en rétablissant la contrainte de non-glissement pour ce contact. En pratique,
une premicre ¢étape de calcul pour laquelle tous les contacts sont empéchés de glisser permet de

découvrir ceux pour lesquels la répartition des efforts favorise le glissement. En effet, lorsque la
percussion tangentielle en un contact (qui est la réaction a la contrainte de non-glissement) excede
le seuil de glissement permis, on remarque que le fait de permettre le glissement de ce contact lors
de la seconde étape a pour effet que le glissement sera presque toujours réalisé.

SIMULATIONS NUMERIQUES

Afin d’illustrer la méthode proposée, des simulations ont été réalisées en utilisant des lois de
comportement associées ou le frottement de Coulomb. Les méthodes de simulations habituellement
utilisées dans ce type de calculs peuvent étre classées en deux familles : les méthodes de type CD
(Contact Dynamics) et les méthodes de dynamique moléculaire. Les méthodes de type CD sont des
méthodes qui respectent rigoureusement les conditions de non-interpénétration des particules. Elles
utilisent des relations de type Signorini (relation (9)) pour décrire le caractere unilatéral des contacts
et les formulations sont implicites. Les méthodes de type dynamique moléculaire pénalisent les
interpénétrations entre les particules par le biais d’une loi de compliance. Les schémas d’intégra-
tion sont de type explicite, ce qui en fait des méthodes faciles d’acces et relativement efficaces
pour réaliser des simulations en statique. Par contre, du fait de I’emploi de lois de compliance, de
nombreuses difficultés apparaissent en dynamique [19].

La méthode A-CD? appartient a la famille des méthodes CD. Elle se révele particulierement efficace
dans les simulations numériques, en statique comme en dynamique, tout particuliérement lorsque
les systémes subissent une évolution qui reléve de plusieurs régimes a la fois (statique, quasi-
statique, dynamique ou collisionnel).

M Loi de comportement associée

La méthode a été appliquée a la simulation d’un écoulement granulaire sur plan incliné. Le matériau
qui s’écoule est constitué de 300 grains rigides de forme polyédrique (tableau 1) dont le nombre de
cotés est issu d’un tirage aléatoire afin de prendre en compte la nature hétérogene du milieu granu-
laire. Lintérét de cette simulation étant d’avoir une variété de forme parmi les grains, ceux-ci ont
été choisis avec le méme rayon (du cercle sur lequel se situent les sommets). La méthode présentée
n’ayant aucune restriction sur la forme, la taille ou la densité des grains, elle peut tout aussi bien
étre employée pour des systemes ou les grains présentent en plus des tailles et des densités variées.
Des simulations similaires avec plus de 1 200 grains sont présentées dans [8]. Les lois de compor-
tement utilisées sont le frottement visqueux pour les forces de frottement entre les particules et une
loi linéaire pour les percussions.

Rayon 0,25 m
Densité 2500 kg.m
Ky 78 kg.m*
K 78 kg.m*
At 10*s
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Une des particularités du mouvement simulé est que les efforts réguliers (c’est-a-dire les forces de
contact) exercés sur les particules sont accompagnés de nombreuses percussions qui surviennent
a I’occasion des fréquentes collisions. C’est dans ce genre de situation que la méthode A-CD?
présente le plus d’avantages.

La géométrie du systéme et sa configuration initiale sont celles de la figure 3.

La mise en place est effectuée a partir d’une position et d’une orientation aléatoires des particules
ainsi que d’une attribution aléatoire d’un nombre de cotés a chacune des particules. Ces particules
sont ensuite soumises a la gravité et un obstacle vertical est ajouté pour retenir les grains. A 1’équi-
libre, la disposition obtenue constitue la condition initiale de 1’éboulement qui se produit apres la
suppression de la retenue. La loi de comportement utilisée pour cette simulation est la loi linéaire
qui correspond au pseudopotentiel quadratique :

1 Sy =)\ ] N

®=-K; ((U +U )T) 1Ky ((U +0 )N) :

2 2 (70)

Kr20,Ky 20

ol K et K sont les coefficients de dissipation pour les composantes tangentielles et normales des
percussions. K, traduit le caractére in€lastique des collisions entre particules [1, 2] et K résulte
de I’atomisation du frottement visqueux. Ce choix conduit a des équations de discontinuité des
vitesses dont la résolution correspond a la résolution d’un probléme quadratique qui s’écrit :

Trouver U" e C qui minimise J (V)= %a(V,V) -1(V) (71)

et qui est résolu selon la méthode numérique présentée.

figure 3
Position initiale du
systeme.

Apres la suppression de la retenue, le systéme évolue pendant une dizaine de secondes avant de
retrouver une nouvelle position d’équilibre. Le déroulement de cet éboulement est montré sur la
figure 4.

M Loi de frottement de Coulomb

La simulation présentée est la compression d’un milieu granulaire dans les conditions d’un essai
biaxial. La phase de mise en place est réalisée selon le méme principe que dans la simulation précé-
dente : les particules sont disposées selon des positions obtenues par perturbation aléatoire d’un
réseau régulier. Elles sont au nombre de 200 et leur orientation ainsi que le nombre de leurs cotés sont
aléatoires. Ces particules sont ensuite soumises a la gravité et a deux obstacles verticaux qui assurent
leur confinement. La disposition obtenue a 1’équilibre constitue la configuration initiale de I’essai.
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figure 4
Début de I’éboulement.

figure 5

Evolution du systéme
de grains pendant
lessai biaxial.

o s ety
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=1s t=275s

La simulation de 1’essai se fait en imposant le déplacement vers le bas de 1’obstacle supérieur et en
maintenant I’obstacle inférieur immobile (figure 5). Sur les deux bords latéraux de 1’échantillon,
une force ¢lastique est exercée de maniére a simuler I’action de la membrane utilisée pour les essais
triaxiaux. Cette force est exercée sur chacune des particules constituant les colonnes de gauche et
de droite de 1’échantillon.

Enfin les paramétres de cette simulation sont donnés dans le tableau 2.

Les résultats de la simulation sont présentés sur la figure 5. Ils sont conformes a ce que prévoit la
théorie de Mohr-Coulomb. La derni¢re image montre la configuration de I’échantillon a la rupture :
la bande de cisaillement correspond a une bande de glissement entre les particules qui fait un

=3
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-
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a - configuration avant la compression i

C: COMPression en cours d-rupture avec apparition de bandes de cisailllement
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angle d’environ 50 degrés. Les bandes de cisaillement que prévoit la théorie de Mohr-Coulomb

(n/ 4+¢/2oup= tg¢) sont ainsi respectées par la bande de rupture par glissement entre les parti-

cules.
tableau 2 -
e Coefficient de frotte- 0,1
Parametres utilisés pour la
. . L ment 0,01 m
simulation numérique de
R Rayon 2 500 kg.m=
lessai triaxial. L
Densité 78 kg.m*
Ky 10“s
A’[

CONCLUSION

A partir du principe des travaux virtuels, on a proposé une description des collisions instantanées
dans les systémes de solides rigides qui s’accompagne d’un théoréme d’existence/unicité de la
solution et d’une inégalité de Clausius-Duhem qui assure que 1’évolution est dissipative. De plus,
une méthode de calcul pour I’évolution des systemes multi-solides a été présentée : la méthode
A-CD?. Cette méthode de calcul constitue un formalisme trés général capable d’intégrer tous les
efforts habituellement rencontrés en simulation numérique des systémes mécaniques. La maniére
de procéder est décrite sous le nom d’atomisation des efforts. Les applications présentées ont ainsi
pris en compte les forces de gravité, de frottement visqueux, de contact unilatéral, de frottement
de Coulomb ainsi que les forces ¢lastiques exercées par une membrane. Cette méthode de calcul
est par construction particulierement adaptée a la simulation des évolutions pour lesquelles des
collisions entre particules ou des ruptures de contact avec discontinuité de vitesse surviennent en
plus des évolutions réguliéres. Pour ces raisons, la méthode A-CD? est bien adaptée a la simulation
numérique du comportement mécanique des matériaux granulaires hétérogenes.
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