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■  RÉSUMÉ
Une méthode de simulation numérique des matériaux hétérogènes, fondée sur 
la description des collisions multiples et la méthode des percussions (PM), est 
présentée. Un matériau hétérogène est constitué d’un ensemble de solides 
rigides encore appelés grains, déformable en tant que système mécanique, 
même si chacune des particules qui le constituent est rigide. L’application du 
principe des travaux virtuels à ce système permet d’obtenir les équations de son 
évolution pour les collisions qui surviennent entre les grains et occasionnent des 
discontinuités de vitesse dans le temps (partie irrégulière de l’évolution), ainsi que 
pour les mouvements où les vitesses sont continues et dérivables par rapport au 
temps (partie régulière de l’évolution). Les équations décrivant la partie régulière 
de l’évolution des grains sont discrétisées en temps selon la méthode des 
percussions, qui consiste à exercer tous les efforts actifs dans le système sous 
forme de percussions à intervalles de temps réguliers. L’évolution du système est 
alors décrite par un formalisme unique constitué des équations de discontinuité 
des vitesses, ce qui constitue la méthode A-CD2 (Atomized stresses Contact 
Dynamics respecting a Clausius-Duhem inequality). Cette méthode est appliquée 
aux lois de comportement associées (frottement visqueux, etc.) et aux lois de 
comportement non associées comme le frottement de Coulomb. Des exemples 
de simulation numérique de systèmes multi-solides représentant des matériaux 
hétérogènes sont présentés.

Numerical simulation of the behavior of heterogeneous materials 
by a calculation method based on the description of collisions and 
the fragmentation of efforts regular (method A-CD2)
■ ABSTRACT
A numerical simulation method for heterogeneous materials, based on a 
description of multiple collisions and the percussion method (PM), will be 
presented herein. A heterogeneous material is composed of a set of rigid solids, 
still called grains, that may be deformed as a mechanical system, even if each 
component particle indeed remains rigid. Application of the virtual work principle to 
this system yields the evolution equations for the intergranular collisions that arise 
and cause velocity discontinuities over time (i.e. the irregular part of evolution) 
as well as for motions in which velocities are continuous and differentiable with 
respect to time (the regular part of evolution). Equations describing the regular 
part of grain evolution are discretized in time according to the percussion 
method, which consists of applying all active stresses in the system in the form 
of percussions at regular time intervals. System evolution is thus described by a 
single formalism composed of velocity discontinuity equations, which gives rise to 
the method known as A-CD2 (for Atomized stresses Contact Dynamics respecting 
a Clausius-Duhem inequality). This method in turn is applied to both the 
associated constitutive laws (viscous friction, etc.) and non-associated constitutive 
laws, such as Coulomb friction. Numerical simulation examples of multi-solid 
systems representing heterogeneous materials will also be presented.
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INTRODUCTION

La simulation numérique d’un essai triaxial sur un matériau hétérogène ou celle de l’éboulement d’un 

milieu granulaire sont des sujets ouverts du génie civil qui ont en commun la question du contact 

unilaté ral entre plusieurs solides. L’approche classique fondée sur la modélisation continue de la 

mécanique des sols présente des insuffi sances reconnues, spécialement lorsque les contraintes sont 

importantes ou lorsque des ruptures se produisent au sein du matériau. Pour cette raison, de nombreux 

auteurs ont proposé des approches discrètes fondées sur la mécanique des milieux granulaires [1-7]. 
L’approche présentée ici repose sur la description des contacts entre grains selon le principe des 

travaux virtuels. Pour calculer les discontinuités de vitesse qui surviennent à l’occasion des contacts 

entre particules, il n’est pas possible d’utiliser les équations usuelles du mouvement puisque la vitesse 

n’est pas dérivable à ces instants. L’application du principe des travaux virtuels ainsi que l’usage de 

lois de comportement selon une formulation appropriée permettent d’obtenir les équations du mouve-

ment pour les instants de discontinuité des vitesses. Les lois de comportement utilisées peuvent être 

des lois associées ou non, ce qui est particulièrement important dans le cas du frottement de Coulomb. 

L’approche présentée se révèle aussi performante pour la simulation de systèmes évoluant à partir 

d’un état d’équilibre vers des équilibres infi niment proches puis une rupture (essais triaxiaux) que 

pour la simulation de systèmes dynamiques (écoulements granulaires). La méthode A-CD2 est issue 

du principe plus général de l’atomisation des efforts réguliers [1, 8]. Pour cette raison, elle est appelée 

« Atomized efforts Contact Dynamics respecting a Clausius-Duhem inequality » [8]. En outre, à partir 

du formalisme de la méthode A-CD2, l’existence et l’unicité de la solution des équations d’évolution 

ainsi qu’une inégalité de Clausius-Duhem apportant la preuve mathématique du caractère dissipatif de 

l’évolution du système sont établies. Enfi n, des simulations numériques bidimensionnelles viennent 

illustrer l’approche proposée. Il s’agit de la simulation numérique de l’évolution de deux systèmes 

multi-particules : la première évolution est dynamique (écoulement granulaire) et la seconde est une 

évolution à partir d’un état d’équilibre vers une rupture (essai biaxial). Des résultats de simulations 

tridimensionnelles sont présentés dans les références [1, 9, 10]. 

LE MODÈLE DE COLLISION ENTRE GRAINS

La modélisation mécanique des collisions entre particules est présentée à partir de la description de 

la collision entre un point matériel et un plan rigide et fi xe. Ce système simplifi é permet de réduire 

le nombre de degrés de liberté et de se focaliser sur le phénomène collisionnel. Les équations du 

mouvement sont étudiées sur un intervalle de temps [t
1
, t

2
] (fi gure 1) à l’intérieur duquel se trouve 

fi gure 1
Collision instantanée entre 

un point et un plan rigide 
et fi xe.



155BLPC • n°268-269 • juil/août/sept 2007

l’instant t
c
 auquel survient une collision instantanée. La collision est supposée instantanée, ce qui 

a pour effet de concentrer toutes les forces de contact dans le temps pour les exercer à l’instant de 

la collision. L’effort ainsi obtenu est une percussion de contact [1, 8]. La vitesse du point est 

discontinue à l’instant de collision t
c
. Ses limites à gauche et à droite sont désignées par les expo-

sants - et +.

■ Le principe des travaux virtuels

Les efforts intérieurs (les forces et les percussions) sont défi nis à partir de leur travail. Le principe 

des travaux virtuels conduit à choisir comme travail virtuel des efforts intérieurs l’expression [1, 

10-12] :

     (1)

où  est une vitesse virtuelle du point et t
c
 l’instant virtuel de collision. En particulier, l’équation (1) 

permet d’établir la dualité entre la percussion intérieure  et la quantité  qui peut de 

ce fait être désignée comme la vitesse de déformation à l’instant de la collision du système constitué 

du point et du plan.

Le travail virtuel des efforts d’accélération est :

   (2)

où m est la masse du point et  sa vitesse réelle [1, 11, 12].

Enfi n, le travail virtuel d’une percussion extérieure au système s’écrit :

   (3)

Le principe des travaux virtuels implique que, pour toute vitesse virtuelle  et tout instant t
c
, on a :

   (4)

Selon ce principe, les équations du mouvement du point dans l’intervalle [t
1
,t

2
] sont :

  presque partout  (5)

et

  partout  (6)

La percussion intérieure  présente dans l’équation (6) est l’effort intérieur au système point-

plan qui agit à l’instant de collision. La dualité au sens du travail des efforts intérieurs entre  

et  invite à exprimer les lois de comportement par l’expression de  en fonction de 

, conformément aux usages de la mécanique.

■ Les lois de comportement

Les lois de comportement traduisent les différents comportements collisionnels des matériaux et 

assurent la non-interpénétration des différentes particules lors d’une collision. Afi n de distinguer 
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ces deux aspects, la percussion intérieure est divisée en deux parties : la percussion dissipative  

qui traduit les différents comportements collisionnels des matériaux et la percussion réactive  

qui assure la non-interpénétration des particules, soit :

    (7)

La percussion dissipative décrit les interactions (que l’on exige dissipatives) entre les particules. 

S’il s’agit d’une loi associée, elle est exprimée à l’aide d’un pseudopotentiel de dissipation Φd, qui 

est une fonction positive, convexe et nulle à l’origine [1, 2, 13-16] :

   (8)

où l’opérateur  désigne le sous-différentiel. Le cas des lois non associées comme le frottement de 

Coulomb est abordé dans la partie consacrée aux collisions simultanées de N solides.

La percussion réactive  est la réaction à la condition de non-interpénétration qui s’écrit 

 avec  (cf. fi gure 1). Cette percussion est égale à 0 si , est non nulle si 

 et assure que la condition  n’est pas vérifi ée. Ces propriétés peuvent être énoncées 

à l’aide des fonctions indicatrices de la manière suivante [1, 2, 13] :

   (9)

Comme K est un ensemble convexe contenant l’origine, l’indicatrice I
K
 est un pseudopotentiel de 

dissipation [14-16].

La percussion intérieure peut ainsi être exprimée en fonction d’un seul pseudopotentiel :

  avec   (10)

c’est-à-dire que la percussion intérieure dérive d’un pseudopotentiel de dissipation.

COLLISION SIMULTANÉE DE N SOLIDES

La théorie des collisions, présentée à partir du cas simple que constitue la collision d’un point et 

d’un plan, peut être généralisée à la collision simultanée de N solides. Les contacts entre solides 

sont supposés ponctuels. On considère N solides qui s’entrechoquent à l’instant t. Le solide i a 

comme masse m
i
, pour centre de gravité G

i
 et comme tenseur d’inertie I

i
. Le k-ième contact entre 

le solide i et le solide j se produit au point  est l’ensemble des points de contact entre 

les solides i et j. Si ces deux solides ne sont pas en contact, S
i,j
 n’est pas nécessairement vide. En 

effet, des interactions instantanées à distance entre des solides qui ne se touchent pas peuvent être 

ajoutées au modèle [1]. Dans ce cas, S
i,j
 est non vide même si les solides ne se touchent pas. Cette 

hypothèse n’est pas envisagée ici.

La percussion  s’exerce au point de contact  est la vitesse virtuelle du centre de 

gravité G
i
 et  est la vitesse virtuelle de rotation du solide i. Des percussions extérieures  sont 

exercées aux points B
i,l
 du solide i.  contient les points B

i,l
 auxquels des percussions extérieures 

sont appliquées au solide i. En défi nissant le vecteur  les vitesses relatives des solides 

aux points de contact A
i,j,k

 sont :

    (11)
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et les vitesses aux points B
i,l
 du solide i sont :

   (12)

Dans la suite, on se limite à considérer le système constitué des N solides à l’instant de la collision. 

En notant   les vitesses du solide i (   étant ses vitesses virtuelles) le principe des 

travaux virtuels implique :

 

 

 (13)

où  et  sont les vitesses réelles et virtuelles du système. Cette expres-

sion conduit aux équations du mouvement du système à l’instant de la collision. Il convient de la 

compléter par des lois de comportement afi n d’obtenir les équations de la collision qui permettent 

de calculer les vitesses du système après la collision.

■ Lois de comportement

› Lois de comportement associées
Les lois de comportement associées sont exprimées à l’aide de pseudopotentiels de dissipation :

    (14)

 est un pseudopotentiel de dissipation. Il est la somme d’un pseudopotentiel décrivant le 

comportement collisionnel des solides i et j et de la fonction indicatrice  

qui assure la non-interpénétration des deux solides. Ce dernier terme requiert la défi nition d’une 

normale au point de contact. À cette fi n, il suffi t que l’un des deux solides soit régulier au point de 

contact. Le cas des collisions pointe-pointe traité dans [14] n’est pas envisagé ici. En substituant la 

relation (14) dans (13) et en appliquant l’inégalité du sous-différentiel [2], on obtient :

  
 

  

 

(15) 
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Comme chaque fonction

   (16)

est un pseudopotentiel de dissipation, la fonction

   (17)

est également un pseudopotentiel de dissipation.

La défi nition du produit scalaire :

   (18)

permet de réécrire l’inégalité (15)

   (19)

pour tout  appartenant à R6N, où Text est un élément de R6N défi ni par 

   (20)

 est la résultante des percussions extérieures appliquées au solide k et  leur moment par 

rapport au centre de gravité de k.

Dans R6N muni du produit scalaire  l’inégalité (19) est équivalente à :

   (21)

ce qui se réduit, en notant  à :

   (22)

Enfi n, les formulations (19) et (22) sont équivalentes au problème de minimisation

   (23)

puisque l’argument X qui réalise le minimum vérifi e la condition de Karush-Kuhn-Tucker [16] :

   (24)

c’est-à-dire l’inclusion (22), où 0(6N) désigne l’élément nul de R6N.

L’existence et l’unicité de la solution dans le cas où des lois de comportement associées sont utili-

sées constituent le théorème suivant :

Théorème 1 : Si toutes les lois de comportement dérivent d’un pseudopotentiel de dissipation, la 

collision simultanée de N solides rigides admet une solution unique .

La démonstration est une conséquence de la forte convexité de la fonction

   (25)
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Elle repose sur les majorations suivantes :

   (26)

   (27)

   (28)

Par ailleurs :

   (29)

puisque Φ est un pseudopotentiel de dissipation.

Enfi n

   (30)

On déduit des relations (28), (29) et (30) que, dans R6N muni du produit scalaire  et de la norme 

associée :

   (31)

Ainsi,  est fortement convexe puisqu’elle est α- convexe (α=2) [1, 16]. De telles fonctions admet-

tent un minimum unique sur  qui est un espace de Hilbert. Ceci démontre l’existence et 

l’unicité de la solution au problème (23).

Les lois de comportement (14) dérivant d’un pseudopotentiel de dissipation, l’inégalité du sous-

différentiel fournit :

   (32)

pour chaque A
i,j,k

, d’où :

   (33)

Si on ne tient pas compte de la variation instantanée de température à l’instant de la collision, cette 

inégalité constitue une inégalité de Clausius-Duhem pour la collision [17]. Elle prouve que l’évolu-

tion est dissipative, c’est-à-dire qu’en l’absence d’effort extérieur exercé sur le système, son énergie 

cinétique diminue :

   (34)
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› Lois de comportement non associées
Précédemment, les lois de comportement ont été considérées comme associées, c’est-à-dire déri-

vant d’un pseudopotentiel de dissipation. Pourtant, certains comportements n’entrent pas dans ce 

cadre ; c’est le cas du frottement de Coulomb. Si  est la percussion exercée en un point de contact 

où la normale est , sa composante tangentielle  appartenant au plan perpendiculaire à  et 

sa composante normale  vérifi ent :

  (35)

Ce comportement ne peut pas être exprimé par une loi associée. On établit néanmoins que, dans 

le cas du frottement de Coulomb, la collision est toujours dissipative et qu’elle admet une solution 

unique à condition que les coeffi cients de frottement soient petits.

En ce qui concerne le caractère dissipatif, il suffi t de remarquer que les percussions  exprimées 

selon la loi de Coulomb vérifi ent l’inégalité (32). Ceci implique également les inégalités (33) et (34), 
démontrant le caractère dissipatif de la collision.

La question de l’existence et de l’unicité de la solution est traitée à partir d’une suite dont les termes 

sont les solutions du problème obtenu lorsque la loi de frottement utilisée est une loi de Tresca qui 

présente la particularité d’avoir un seuil de glissement indépendant de l’effort normal et donc d’être 

une loi associée. Il a été montré que cette suite de solutions converge vers la solution unique du 

problème avec frottement de Coulomb si les coeffi cients de frottement sont petits [1].

Si, en chaque contact, la percussion normale P
N
 est connue ou fi xée, la percussion tangentielle 

dérive d’un pseudopotentiel de dissipation :

   (36)

avec  où  est la vitesse relative tangentielle des deux solides 

au point de contact. La solution X du problème pour lequel les percussions normales sont connues 

ou fi xées est l’argument qui réalise le minimum de la fonction fortement convexe :

   (37)

dans laquelle le vecteur  contient les valeurs de P
N
 pour chaque contact et le pseudopotentiel 

 est la somme sur tous les contacts des termes :

   (38)

Le problème avec frottement de Coulomb est ainsi traité par le processus itératif qui consiste à 

résoudre, à chaque étape, un problème avec loi de Tresca ; les seuils de glissement constants utilisés 

à l’étape n + 1 sont les percussions normales obtenues à l’étape n multipliées par le coeffi cient de 

frottement :

   (39)
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L’existence et l’unicité de la solution sont acquises dans le cas où la suite X
n
 converge. On montre 

qu’il existe deux réels positifs M et M’, dépendant de la taille des grains, tels que, dans le cas de NC 

contacts simultanés, si l’inégalité 

   (40)

est vérifi ée, il existe alors une unique solution à la collision avec frottement de Coulomb [1]. Si les 

coeffi cients de frottement sont différents en chaque contact, on peut appliquer cette inégalité au plus 

grand d’entre eux.

MÉTHODE NUMÉRIQUE

Une théorie des collisions instantanées de plusieurs solides a été présentée. On s’intéresse main-

tenant à l’évolution des systèmes multi-particules dans le temps. La méthode proposée permet de 

calculer une solution approchée de l’évolution des systèmes de N particules.

Soit f
int

 l’élément de R6N contenant les résultantes des forces intérieures (par exemple, des forces 

de contact) exercées sur chaque particule et leurs moments. Les coordonnées  sont 

les trois composantes de la résultante des forces exercées sur la particule i et les coordonnées 

 sont les trois composantes de leur moment par rapport au centre de gravité de i.

De même, f
ext

 contient les résultantes des forces extérieures (par exemple, du poids) exercées sur 

chaque particule et leurs moments. Pint et Pext sont les éléments de R6N contenant les résultantes des 

percussions intérieures et extérieures exercées sur chaque particule ainsi que leurs moments par 

rapport aux centres de gravité des particules. Les équations du mouvement du système sont données 

sur un intervalle de temps quelconque par :

    (41)

où U est le vecteur qui contient les vitesses de toutes les particules.

Entre l’instant 0 et l’instant t, les efforts cumulés Rint et Rext sont :

 

  (42)

où t
i
 et t

j
 sont les instants auxquels des percussions intérieures et extérieures sont exercées. H est la 

fonction d’Heaviside et δ la distribution de Dirac. Les équations du mouvement s’écrivent, au sens 

des mesures,

   (43)

en fonction des efforts cumulés.
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La méthode des percussions (PM) consiste à approcher les éléments réguliers de R
int

 et de R
ext 

par des percussions, ce qui est appelé l’atomisation des efforts. Une évolution approchée est alors 

obtenue, qui se caractérise par une succession de discontinuités de vitesse séparées par des évolu-

tions à vitesse constante. Lorsqu’elle est appliquée à des systèmes de solides, cette méthode porte 

le nom de méthode A-CD2.

D’un point de vue pratique, l’application de la méthode A-CD2 consiste :

–  à découper la durée de simulation [0,T] en n intervalles [t
k
,t

k+1
] de longueur  Sur chacun 

de ces intervalles, les efforts réguliers (forces et moments) sont atomisés, c’est-à-dire remplacés par 

une percussion exercée à l’instant  ;

–  à considérer que tous les efforts irréguliers (percussions exercées à l’occasion des collisions) que 

subit le système pendant l’intervalle de temps [t
k
,t

k+1
] sont exercés à l’instant θ

k
.

Il en découle que les vitesses sont discontinues aux instants θ
k
 où des percussions sont exercées et 

qu’elles sont constantes partout ailleurs. Les percussions exercées aux instants θ
k
 sont les percus-

sions résultant de l’atomisation des efforts réguliers (forces et moments) qui s’exercent pendant 

[t
k
,t

k+1
] ainsi que les percussions dues aux collisions survenant pendant [t

k
,t

k+1
].

■ L’atomisation des efforts réguliers

L’atomisation d’une force f sur l’intervalle [t
k
,t

k+1
] consiste à la remplacer par une percussion P 

exercée à l’instant θ
k
. Dans le cas le plus général, f dépend d’une variable y qui dépend du temps. 

L’approximation utilisée part de la constatation du fait que :

    (44)

ainsi, f est remplacée par la percussion :

   (45)

qui est la dérivée de 

   (46)

par rapport au temps.

En pratique, on rencontre le plus souvent l’une des quatre situations suivantes : les forces constantes, 

celles qui dépendent du temps (la fonction est l’identité), celles qui dépendent des positions (la 

fonction désigne les positions) et celles qui dépendent des vitesses (la fonction y désigne les 

vitesses).

Une force constante f
0
 est remplacée par une percussion d’intensité . Par exemple l’action du 

poids,  est remplacée par celle de la percussion

   (47)

exercée à l’instant θ
k.
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Une force f(t) exercée sur le système pendant l’intervalle [t
k
,t

k+1
], est remplacée par la percussion 

d’intensité  exercée à l’instant θ
k
.

Une force  dépendant des positions X des éléments du système, exercée sur le système 

pendant l’intervalle [t
k
,t

k+1
], est remplacée par une percussion d’intensité  exercée à 

l’instant θ
k
. En effet, les positions étant des fonctions continues, . Ainsi, 

si deux points du système sont liés par une liaison élastique dont la force de rappel dépend d’un 

allongement x(t) (qui est une différence de positions) à l’instant t, le module de la force de rappel 

étant  cette force est alors remplacée par une percussion d’intensité  exercée 

à l’instant θ
k
.

Une force dépendant des vitesses V du système, exercée sur le système pendant l’intervalle 

[t
k
,t

k+1
] est remplacée par une percussion d’intensité  exercée à l’instant θ

k
, 

puisque les vitesses sont discontinues à l’instant θ
k
.

■ Algorithme de résolution des équations obtenues

La méthode conduit à des vitesses qui sont des fonctions en escalier : elles subissent des discon-

tinuités aux instants θ
k
 et sont constantes partout ailleurs. Ainsi, sur , les vitesses sont 

constantes et chaque particule se déplace avec un vecteur vitesse et un vecteur vitesse de rotation 

constants. La manière de procéder à ces déplacements n’est pas discutée ici. En revanche, la manière 

de calculer les discontinuités de vitesse qui surviennent aux instants θ
k
 nécessite un développement. 

On peut tout d’abord remarquer que, grâce à la manière dont est réalisée l’atomisation des efforts 

réguliers (équation (45)), les équations qui régissent ces discontinuités sont de la même forme que 

l’équation (13) qui décrit les collisions simultanées de N solides.

› Cas où les lois de comportement dérivent d’un pseudopotentiel
Les percussions qui sont responsables de la discontinuité de vitesse à l’instant θ

k
 proviennent 

soit des collisions survenant sur l’intervalle [t
k
,t

k+1
], soit de l’atomisation des efforts réguliers sur 

cet intervalle. Dans l’hypothèse où ces percussions dérivent d’un pseudopotentiel, le problème à 

résoudre est formulé selon les trois manières équivalentes :

    (48)

chacune des percussions dérivant du pseudopotentiel

   (49)

La fonction

   (50)

est également un pseudopotentiel et peut être séparé en deux parties :

   (51)
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 est la somme des fonctions indicatrices assurant la non-interpénétration aux points de 

contact qui sont pour l’occasion renommés  (p étant le nombre de contacts) :

   (52)

 est la somme de tous les pseudopotentiels de dissipation associés à la partie dissipative des 

percussions. Dans la suite, elle sera supposée différentiable.

L’équation qui gouverne la discontinuité de vitesse est alors équivalente à la minimisation de :

   (53)

ou encore de

   (54)

avec 

Pe est défi ni de la même manière que Text par la relation (20). Text contient les résultantes et les 

moments des percussions extérieures appliquées au système à l’instant d’une collision. Pe contient 

les résultantes et les moments des percussions extérieures exercées sur le système pendant l’inter-

valle [t
k
,t

k+1
] ainsi que ceux des percussions issues de l’atomisation des forces qui ne dépendent pas 

des vitesses.

La minimisation de cette fonction est équivalente à la recherche de point-selle du Lagrangien qui 

lui est associé [1] :

   (55)

Le domaine Ω ainsi que les fonctions F et  sont convexes. Aussi, si X est une solution, il 

existe au moins un λ dans  tel que (X, λ) soit un point-selle de L [13, 16] :

   (56)

Ceci conduit à considérer le problème dual (Q) qui est la maximisation de :

  avec   (57)

La résolution du problème consiste à appliquer au problème dual une méthode de gradient à pas 

fi xe suivie d’une projection sur le domaine d’optimisation. Cette approche est appelée méthode 

d’Uzawa [1].

En un point  on note Xµ l’élément qui minimise L(Y, µ). Ainsi 

   (58)

ce qui permet de remarquer que  est le gradient de G(µ). Le pas est noté ρ. La 

projection sur le domaine  se fait aisément :

  (59)
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L’algorithme peut être résumé comme suit :

1.   est choisi à l’étape 0.

2.  À chaque itération n,  est calculé

3.   est actualisé selon 

Cet algorithme permet de remplacer le problème initial de minimisation sous contrainte

  (60)

par une suite de problèmes de minimisation sans contrainte

  (61)

Les questions liées à la convergence en fonction de la valeur du pas ρ sont traitées dans la réfé-

rence [18].

› Cas du frottement de Coulomb
La résolution du problème avec frottement de Coulomb se fait selon le même principe que celui 

utilisé pour démontrer l’existence et l’unicité de la solution. En partant d’une première approxi-

mation des percussions normales,  la solution correspondant à la loi de Tresca (dont les 

seuils de glissement sont calculés à partir des éléments de G
0
) est calculée :

  (62)

Le pseudopotentiel  est défi ni par l’équation (38) et le théorème 1 permet de conclure à 

l’existence et l’unicité de .

La résolution de ce problème permet, à partir des percussions normales,

  (63)

de réactualiser les seuils de glissement pour l’itération suivante.

Chacun des problèmes avec loi de Tresca est un problème de minimisation sous contraintes. La 

méthode utilisée pour le résoudre est a priori celle qui est décrite dans la partie précédente. Cela 

conduirait à un algorithme constitué de deux boucles imbriquées de minimisations, une pour l’ac-

tualisation des seuils de glissement et l’autre constituée de la suite de problèmes de minimisation 

sous contraintes issue de la méthode d’Uzawa, ce qui conduirait à des temps de calcul prohibitifs. 

La solution originale proposée ici consiste à ne faire qu’une seule boucle dans laquelle les seuils 

de glissement ainsi que les valeurs des réactions aux contraintes sont réactualisés simultanément. 

Afi n d’alléger les écritures, la méthode est décrite pour le cas bidimensionnel, ce qui a l’avantage 

de réduire la tangente au contact à une seule dimension.

Le problème (54) est d’abord modifi é par l’ajout de contraintes de non-glissement à chaque 

contact :

  (64)

où  est la direction tangente au contact l. On obtient ainsi le problème :

  (65)
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où  

Les nouvelles contraintes ont pour effet de forcer la solution à se trouver dans la branche I de 

la fi gure 2, pour cette première étape. Ce moyen de procéder est parfois désigné sous le terme 

de méthode des multiplicateurs. Le théorème 1 indique que ce problème possède une solution 

unique.

La solution est calculée par la méthode précédemment décrite, modifi ée pour tenir compte des 

contraintes supplémentaires d’égalité que comporte la relation (65). La résolution consiste à recher-

cher le point-selle du Lagrangien :

  (66)

Cette recherche est effectuée en notant  le pas correspondant aux contraintes d’inégalité et  celui 

correspondant aux contraintes d’égalité :

1.   et  sont choisis à l’étape 0.

2.  À chaque étape n,  est calculé.

3.   est réactualisé .

4.   est réactualisé 

Dans ce qui précède, la manière de résoudre un problème de minimisation sans contrainte n’a pas 

été discutée. Cette étape ne pose pas de diffi culté car les fonctions à minimiser sont fortement 

convexes. Il en résulte que les méthodes newtoniennes, par exemple la méthode Broyden-Fletcher-

Goldfarb-Shanno dite BFGS [16], et les méthodes de gradient conjugué convergent facilement vers 

la solution.

fi gure 2
Loi de frottement 

de Tresca de seuil g.
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Les vecteurs ξ et λ contiennent les multiplicateurs de Lagrange associés aux contraintes ψλ et φλ. 

Leurs composantes sont les valeurs de la percussion tangentielle et de la percussion normale à 

chaque contact. Aussi, ces termes sont-ils comparés à l’issue du calcul précédent :

 
alors la contrainte X

T
 = 0 est justifi ée au contact 1 selon la relation (35)

alors la contrainte X
T
 = 0 est impropre au contact 1 selon la relation (35)

  (67)

Si  la condition de non-glissement ne peut être maintenue en ce contact et la solution se 

trouve dans la branche II de la fi gure 2.

Pour l’étape suivante, le problème est reformulé en tenant compte de la valeur des percussions 

obtenues à chaque contact.

Pour chaque contact i où la condition de non-glissement a provoqué une percussion tangentielle 

plus importante que ce que permet la loi de comportement (35), la contrainte correspondante ψι est 

abandonnée. Les percussions tangentielles en ces points ne pouvant plus être obtenues comme réac-

tions à cette contrainte, il faut ajouter à la fonction à minimiser le pseudopotentiel correspondant à 

la loi de frottement, c’est-à-dire le terme :

  (68)

Les contacts pour lesquels les contraintes ψλ sont maintenues sont renumérotés de 1 à q.

Une variante consiste à étendre cette somme à tous les contacts. Le fait d’ajouter le terme  

correspondant à un contact l où la contrainte ψλ est maintenue ne modifi e pas la solution. En 

revanche, ce terme accélère la convergence car il constitue une fonction de pénalisation associée à 

la contrainte ψλ.

La seconde étape de la résolution consiste alors en la minimisation de la fonction :

  (69)

pour 

La minimisation du problème (69) est effectuée de la même manière que celle de (65) puisque la 

fonction à minimiser ne diffère que par le terme  et le domaine de minimisation que par 

les contraintes ψι qui ont été supprimées.

1.   et  sont choisis à l’étape 0

2.  À chaque étape n,  est calculé

3.   est réactualisé 

4.   est réactualisé 
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À l’issue de cette étape, il faut vérifi er si, pour chaque contact, la loi de comportement est 

respectée.

Pour les contacts auxquels une contrainte de non-glissement a été associée, il faut vérifi er que la 

percussion tangentielle  n’excède pas le seuil de glissement  permis par la loi de Coulomb. 

Si  il faut procéder comme précédemment et refaire un nouveau calcul. 

Pour les contacts auxquels la contrainte de non-glissement a été retirée, il convient de vérifi er que 

la vitesse de glissement n’est pas nulle. Si c’est le cas, l’hypothèse de différentiabilité de la fonction 

à minimiser n’est plus vérifi ée par la solution obtenue à cause du terme  ce qui nécessite 

de reprendre le calcul en rétablissant la contrainte de non-glissement pour ce contact. En pratique, 

une première étape de calcul pour laquelle tous les contacts sont empêchés de glisser permet de 

découvrir ceux pour lesquels la répartition des efforts favorise le glissement. En effet, lorsque la 

percussion tangentielle en un contact (qui est la réaction à la contrainte de non-glissement) excède 

le seuil de glissement permis, on remarque que le fait de permettre le glissement de ce contact lors 

de la seconde étape a pour effet que le glissement sera presque toujours réalisé.

SIMULATIONS NUMÉRIQUES

Afi n d’illustrer la méthode proposée, des simulations ont été réalisées en utilisant des lois de 

comportement associées ou le frottement de Coulomb. Les méthodes de simulations habituellement 

utilisées dans ce type de calculs peuvent être classées en deux familles : les méthodes de type CD 

(Contact Dynamics) et les méthodes de dynamique moléculaire. Les méthodes de type CD sont des 

méthodes qui respectent rigoureusement les conditions de non-interpénétration des particules. Elles 

utilisent des relations de type Signorini (relation (9)) pour décrire le caractère unilatéral des contacts 

et les formulations sont implicites. Les méthodes de type dynamique moléculaire pénalisent les 

interpénétrations entre les particules par le biais d’une loi de compliance. Les schémas d’intégra-

tion sont de type explicite, ce qui en fait des méthodes faciles d’accès et relativement effi caces 

pour réaliser des simulations en statique. Par contre, du fait de l’emploi de lois de compliance, de 

nombreuses diffi cultés apparaissent en dynamique [19]. 

La méthode A-CD2 appartient à la famille des méthodes CD. Elle se révèle particulièrement effi cace 

dans les simulations numériques, en statique comme en dynamique, tout particulièrement lorsque 

les systèmes subissent une évolution qui relève de plusieurs régimes à la fois (statique, quasi-

statique, dynamique ou collisionnel).

■ Loi de comportement associée

La méthode a été appliquée à la simulation d’un écoulement granulaire sur plan incliné. Le matériau 

qui s’écoule est constitué de 300 grains rigides de forme polyédrique (tableau 1) dont le nombre de 

côtés est issu d’un tirage aléatoire afi n de prendre en compte la nature hétérogène du milieu granu-

laire. L’intérêt de cette simulation étant d’avoir une variété de forme parmi les grains, ceux-ci ont 

été choisis avec le même rayon (du cercle sur lequel se situent les sommets). La méthode présentée 

n’ayant aucune restriction sur la forme, la taille ou la densité des grains, elle peut tout aussi bien 

être employée pour des systèmes où les grains présentent en plus des tailles et des densités variées. 

Des simulations similaires avec plus de 1 200 grains sont présentées dans [8]. Les lois de compor-

tement utilisées sont le frottement visqueux pour les forces de frottement entre les particules et une 

loi linéaire pour les percussions.

tableau 1
Paramètres utilisés 
pour la simulation 

numérique de 
l’éboulement.

Rayon
Densité

KN
KT
∆t

0,25 m
2 500 kg.m-3

78 kg.m-1

78 kg.m-1

10-4 s
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Une des particularités du mouvement simulé est que les efforts réguliers (c’est-à-dire les forces de 

contact) exercés sur les particules sont accompagnés de nombreuses percussions qui surviennent 

à l’occasion des fréquentes collisions. C’est dans ce genre de situation que la méthode A-CD2 

présente le plus d’avantages.

La géométrie du système et sa confi guration initiale sont celles de la fi gure 3.

La mise en place est effectuée à partir d’une position et d’une orientation aléatoires des particules 

ainsi que d’une attribution aléatoire d’un nombre de côtés à chacune des particules. Ces particules 

sont ensuite soumises à la gravité et un obstacle vertical est ajouté pour retenir les grains. À l’équi-

libre, la disposition obtenue constitue la condition initiale de l’éboulement qui se produit après la 

suppression de la retenue. La loi de comportement utilisée pour cette simulation est la loi linéaire 

qui correspond au pseudopotentiel quadratique :

   (70)

où K
T
 et K

N
 sont les coeffi cients de dissipation pour les composantes tangentielles et normales des 

percussions. K
N
 traduit le caractère inélastique des collisions entre particules [1, 2] et K

T
 résulte 

de l’atomisation du frottement visqueux. Ce choix conduit à des équations de discontinuité des 

vitesses dont la résolution correspond à la résolution d’un problème quadratique qui s’écrit :

  (71)

et qui est résolu selon la méthode numérique présentée.

Après la suppression de la retenue, le système évolue pendant une dizaine de secondes avant de 

retrouver une nouvelle position d’équilibre. Le déroulement de cet éboulement est montré sur la 

fi gure 4.

■ Loi de frottement de Coulomb

La simulation présentée est la compression d’un milieu granulaire dans les conditions d’un essai 

biaxial. La phase de mise en place est réalisée selon le même principe que dans la simulation précé-

dente : les particules sont disposées selon des positions obtenues par perturbation aléatoire d’un 

réseau régulier. Elles sont au nombre de 200 et leur orientation ainsi que le nombre de leurs côtés sont 

aléatoires. Ces particules sont ensuite soumises à la gravité et à deux obstacles verticaux qui assurent 

leur confi nement. La disposition obtenue à l’équilibre constitue la confi guration initiale de l’essai.

fi gure 3
Position initiale du 

système.
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La simulation de l’essai se fait en imposant le déplacement vers le bas de l’obstacle supérieur et en 

maintenant l’obstacle inférieur immobile (fi gure 5). Sur les deux bords latéraux de l’échantillon, 

une force élastique est exercée de manière à simuler l’action de la membrane utilisée pour les essais 

triaxiaux. Cette force est exercée sur chacune des particules constituant les colonnes de gauche et 

de droite de l’échantillon.

Enfi n les paramètres de cette simulation sont donnés dans le tableau 2.

Les résultats de la simulation sont présentés sur la fi gure 5. Ils sont conformes à ce que prévoit la 

théorie de Mohr-Coulomb. La dernière image montre la confi guration de l’échantillon à la rupture : 

la bande de cisaillement correspond à une bande de glissement entre les particules qui fait un fi gure 5
Évolution du système 

de grains pendant 
l’essai biaxial.

fi gure 4
Début de l’éboulement.
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CONCLUSION

À partir du principe des travaux virtuels, on a proposé une description des collisions instantanées 

dans les systèmes de solides rigides qui s’accompagne d’un théorème d’existence/unicité de la 

solution et d’une inégalité de Clausius-Duhem qui assure que l’évolution est dissipative. De plus, 

une méthode de calcul pour l’évolution des systèmes multi-solides a été présentée : la méthode 

A-CD2. Cette méthode de calcul constitue un formalisme très général capable d’intégrer tous les 

efforts habituellement rencontrés en simulation numérique des systèmes mécaniques. La manière 

de procéder est décrite sous le nom d’atomisation des efforts. Les applications présentées ont ainsi 

pris en compte les forces de gravité, de frottement visqueux, de contact unilatéral, de frottement 

de Coulomb ainsi que les forces élastiques exercées par une membrane. Cette méthode de calcul 

est par construction particulièrement adaptée à la simulation des évolutions pour lesquelles des 

collisions entre particules ou des ruptures de contact avec discontinuité de vitesse surviennent en 

plus des évolutions régulières. Pour ces raisons, la méthode A-CD2 est bien adaptée à la simulation 

numérique du comportement mécanique des matériaux granulaires hétérogènes.
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angle d’environ 50 degrés. Les bandes de cisaillement que prévoit la théorie de Mohr-Coulomb 

 sont ainsi respectées par la bande de rupture par glissement entre les parti-

cules.

tableau 2
Paramètres utilisés pour la 

simulation numérique de 
l’essai triaxial.

Coeffi cient de frotte-
ment

Rayon
Densité

KN
∆τ

0,1
0,01 m

2 500 kg.m-3

78 kg.m-1

10-4 s




