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Le mesurage en continu de la turbidité des eaux résiduaires urbaines est 

ne sont pas satisfaites. En particulier l’incertitude sur les étalons peut jouer un 

à mettre en œuvre dans un cadre opérationnel, l’incertitude de mesurage de 
la turbidité a été évaluée en effectuant des simulations d’étalonnages par la 
méthode de Monte Carlo. Cette méthode simple et générale est fondée sur les 

 

La turbidimétrie, déjà utilisée pour le mesurage des concentrations de biomasse dans les stations 

de traitement des eaux résiduaires, commence à se développer en réseaux d’assainissement. Elle 

constitue un moyen relativement simple de suivre la dynamique de la pollution particulaire, en 

particulier lors des événements pluvieux [1-4]. Elle peut être utilisée pour le pilotage d’ouvra-

ges de stockage ou de traitement, pour la surveillance des rejets et le calage de modèles de flux 

polluants
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Pour ces différentes applications, il est souhaitable de connaître l’incertitude du mesurage de la tur-

bidité, notamment l’incertitude de la courbe d’étalonnage de l’appareil. Dans le cas le plus simple 

(étalons précis, dispersion constante des mesures en fonction de la valeur mesurée), l’incertitude 

peut être calculée à l’aide de formules analytiques simples (appareil linéaire), ou plus compliquées 

pour les appareils non linéaires, ce qui est fréquemment le cas pour les turbidimètres de terrain [3]. 

Cependant pour ces appareils, les incertitudes dues aux étalons peuvent représenter une part non 

négligeable de l’incertitude totale du mesurage. Les méthodes analytiques devenant alors difficiles 

à mettre en œuvre dans un cadre opérationnel par du personnel non spécialisé, on a donc évalué 

l’incertitude de mesurage de la turbidité en effectuant des simulations d’étalonnage par la méthode 

de Monte Carlo.

Cette méthode simple est en effet adaptée quand la variable de sortie d’un processus ne peut pas 

s’exprimer par une fonction unique des variables d’entrée, ou quand l’évaluation de l’incertitude 

devient plus complexe : différentielles de fonctions composées ou, comme dans notre cas, calculs 

matriciels itératifs.

 

Matériel, méthodes d’étalonnage et de calcul de l’incertitude 

Matériel et méthodes d’étalonnage ›
Un turbidimètre de terrain a été étalonné sur la gamme 0-2 000 FAU (Formazin Attenuation Unit). 

Cette gamme convient pour la majorité des turbidités constatées dans les eaux résiduaires urbaines. 

Les étalons de formazine ont été préparés au Laboratoire selon la norme NF EN ISO 7027 [5] sur 

la détermination de la turbidité. Cinq niveaux d’étalonnage 100, 250, 500, 1 000, 2 000 FAU (plus 

le zéro), correspondant au nombre minimal indiqué dans la norme, ont été obtenus par dilutions 

successives de suspensions mères à 2 000 FAU. Ils sont répartis en progression sensiblement expo-

nentielle pour optimiser la précision relative dans les basses valeurs.

Les étalonnages ont été effectués, d’une part, sur une seule gamme d’étalons et, d’autre part, sur 

cinq gammes différentes d’étalons, pour prendre en compte leur incertitude, comme indiqué dans 

la norme XP T 90-210 [6]. Cette norme porte en fait sur l’évaluation d’une méthode alternative 

par rapport à une méthode de référence, mais peut être transposée à l’étalonnage de capteurs. Les 

mesurages ont été répétés cinq fois comme également indiqué dans cette norme.

Afin d’accroître la représentativité statistique des résultats, trois séries d’étalonnages sur une gamme 

et trois séries d’étalonnage sur cinq gammes ont été effectuées.

Calcul de l’incertitude avec les formules analytiques classiques ›
L’incertitude d’étalonnage pour une valeur étalon x

0
 donnée peut être exprimée par l’écart type s

étal
 

au carré (variance) selon les expressions (1) et (2) [7] (y
0
 est l’indication de l’appareil correspon-

dant à x
0
). Ces expressions sont valides avec les hypothèses de dispersion constante des mesures en 

fonction de la valeur mesurée et d’incertitude négligeable sur les étalons.

 

pour une droite d’étalonnage de pente b et :

 

(1)

(2)
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pour un polynôme de degré 2, de pente f ’, avec :

   

   

où :

 s –
l
2 : estimation de la variance liée (écart type des résidus au carré) = ;  

K = 2 pour une droite et 3 pour un polynôme de degré 2 ;

N et n –
i
 sont respectivement le nombre de valeurs d’étalonnage et le nombre de répétitions pour 

le niveau i ;

y –
ij
 et y’

i
 sont respectivement les indications de l’appareil pour les valeurs d’étalonnage et l’ordon-

née correspondante de la courbe d’étalonnage ;

x –
i
 et xm sont respectivement les valeurs et la moyenne des valeurs étalon utilisées pour l’établis-

sement de la courbe d’étalonnage.

La division respectivement par b et f ’(x
0
) s’explique simplement du fait qu’on utilise en pratique la 

fonction inverse de la relation d’étalonnage pour convertir les indications y
0
 de l’appareil en valeurs 

x
0
 exprimées en unités étalons ( ).

La  représente un exemple d’ajustement de droite et de courbe d’étalonnage sur des points 

expérimentaux (cinq répétitions), avec les écarts types d’incertitude associés s
étal

 (y
0
) et s

étal
 (x

0
) pour 

la courbe (polynôme de degré 2).

 Exemple fictif de droite et 
courbe d’étalonnage avec 
les incertitudes associées 

(pour la courbe).
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Pour des polynômes de degré supérieur à 2, l’expression de s2
étal

 (x
0
) se complexifie encore [8]. 

Différentes méthodes sont proposées pour juger de l’intérêt de linéariser l’appareil par un polynôme 

de degré 2 ou supérieur. Celle indiquée dans la norme XP T 90-210 [6] consiste à tester si la part 

de variance due à l’erreur de modèle  est supérieure ou non à la variance de l’erreur 

expérimentale  par le test de Fisher : on voit sur la  que les écarts ym
i
 

– y’d
i
 pour la droite sont supérieurs aux écarts expérimentaux y

ij
 – ym

i
, alors que pour le polynôme 

de degré 2 les écarts ym
i
 – y’p

i
 sont du même ordre de grandeur, ce qui signifie que la résolution 

expérimentale ne permet pas d’aller à un degré supérieur.  

 Comparaison des erreurs 
de modèle (écarts ym

i
 – y’d

i
 

pour la droite et ym
i
 – y’p

i
 

pour le polynôme) avec 
l’erreur expérimentale 

(écarts y
ij
 – ym

i
).

Résultats et discussion 

La  représente, d’une part, l’écart type expérimental s
exp

(x
0
) et, d’autre part, les incertitu-

des d’étalonnage s
étal

(x
0
) pour trois configurations d’étalonnage. Comme indiqué au paragraphe 

« Matériel et méthodes d’étalonnage » ci-dessus, ces résultats correspondent à la moyenne de trois 

séries de chacune des configurations. Ces trois configurations sont les suivantes : 

étalonnage linéaire sur cinq gammes d’étalons (cinq répétitions) ; 

linéarisation en modélisant avec un polynôme de degré 2 sur une gamme d’étalons (cinq  

répétitions),

linéarisation en modélisant avec un polynôme de degré 2 sur cinq gammes d’étalons pour pren- 

dre en compte leur incertitude [6].

Cette figure montre que :

l’écart type d’incertitude pour les étalonnages polynomiaux  et  est nettement inférieur à celui 

de l’étalonnage linéaire . Pour ce dernier, on obtient une incertitude relative d’environ 25 % pour 

la valeur 100 FAU, et de 4 % à 500 FAU. La première valeur d’incertitude, qui correspond au bas 

de la gamme des turbidités des eaux résiduaires urbaines, paraît trop élevée pour certaines applica-

tions : il est donc préférable de linéariser en modélisant par un polynôme ;

l’écart type d’incertitude d’étalonnage polynomial sur cinq gammes , qui prend en compte l’in-

certitude sur les étalons, apparaît prépondérant par rapport à l’écart type d’incertitude expérimental 

s
exp

(x
0
). L’incertitude sur les étalons joue donc un rôle notable dans l’incertitude d’étalonnage ;

l’écart type d’incertitude expérimental s
exp

(x
0
) qui caractérise la dispersion des mesures, augmente 

en fonction de la valeur mesurée ;
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l’écart type d’incertitude d’étalonnage polynomial sur une gamme  est notablement inférieur à 

celui pour l’étalonnage sur cinq gammes , alors que l’on devrait obtenir l’inverse : la multiplica-

tion des expériences diminue l’incertitude sur les valeurs moyennes observées, et on s’attendrait à 

ce que l’incertitude sur une gamme soit  fois plus élevée que sur cinq gammes. L’explication de 

ce paradoxe est qu’un étalonnage sur une gamme, effectué en diluant une suspension mère unique, 

ne permet pas de prendre en compte les incertitudes sur les suspensions mères, et donc la dispersion 

des valeurs qui en résulte.

 Écarts types d’incertitude 
expérimentale et 

d’étalonnage pour trois 
configurations, comparés à 
la répétabilité des mesures 

sur la formazine.

Le calcul  est le plus satisfaisant car il prend en compte la non-linéarité de la courbe d’étalonnage 

et l’incertitude sur les étalons. Mais il suppose cette incertitude (ainsi que l’incertitude expérimen-

tale) indépendante de la valeur étalon concernée. Des résultats expérimentaux obtenus par lectures 

de turbidité sur des suspensions étalon préparées par dilutions successives de suspensions mères 

différentes (cf. paragraphe « Simulation des valeurs étalon ») montrent que cette hypothèse n’est 

pas satisfaite : la dispersion augmente avec la valeur dans un rapport de 1 à 6 entre les niveaux 100 

et 2 000 FAU.

On peut traiter analytiquement des incertitudes variables, mais les calculs sont assez complexes 

(voir paragraphe « Évaluation de l’incertitude de l’étalonnage avec les formules analytiques clas-

siques » pour l’étalonnage linéaire), et on a donc procédé par simulation de l’étalonnage par la 

méthode de Monte Carlo. Cette méthode est facile à mettre en œuvre, et elle est générique : elle 

permet de traiter de la même manière différents cas de figure, à condition d’avoir une connaissance 

suffisante des caractéristiques statistiques de chaque source d’erreur.

 

Principe et mise en œuvre de la méthode 

La méthode de Monte Carlo consiste à décrire la distribution statistique de la variable de sortie d’un 

processus par de nombreuses simulations de ce processus, à partir de tirages aléatoires de valeurs 

des variables d’entrée suivant leurs distributions propres [7-9].

Dans notre cas, le processus est l’établissement de la courbe d’étalonnage, qui est effectué suivant 

les étapes ci-après :

simulation de la valeur étalon x 
5k

 de la suspension mère (indice k) par tirage aléatoire suivant la 

distribution observée expérimentalement ;

simulation des valeurs étalons x 
ik
, obtenues pour les niveaux inférieurs par dilutions successives 

de la suspension mère, d’après les distributions observées expérimentalement ;
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simulation des indications moyennes de l’appareil y 
ikm

 pour les valeurs théoriques étalon x
ik
, par 

application de la fonction d’étalonnage f réputée vraie (courbe d’étalonnage moyenne établie sur 

l’ensemble des quinze gammes d’étalonnage expérimentales) ;

simulation des valeurs individuelles expérimentales mesurées y 
ijk

, résultant de la répétabilité de 

l’appareil, d’après les distributions de répétabilité observées expérimentalement ;

Ajustement sur les points expérimentaux (x 
ik
, y

ijk
) de la courbe d’étalonnage f

k
 simulée ;

calcul de l’écart f 
k
(x

0
) – f(x

0
) pour la valeur courante x

0
.

La simulation d’un grand nombre de fonctions d’étalonnage f
k
 fournit la distribution des écarts 

entre ces courbes et la courbe vraie.

L’incertitude sur la courbe d’étalonnage à un niveau de confiance donné (95 % par exemple) s’ob-

tient alors en calculant le quantile correspondant des valeurs d’écarts simulées. La distribution des 

écarts étant normale, le quantile 68 % correspond à l’écart type s
étal

(y
0
).

Le détail des différentes étapes est le suivant.

Simulation de la valeur étalon x › 5k de la suspension mère
Dans un premier temps, on a évalué la dispersion des concentrations des suspensions mères. Pour 

ce faire, quinze suspensions mères à 2 000 FAU ont été préparées indépendamment selon la norme 

NF EN ISO 7027 [5], et quinze gammes ont été préparées par dilutions successives, permettant 

d’établir une courbe d’étalonnage précise. De par leur mode de préparation normalisé, les valeurs 

étalon des suspensions mères sont supposées centrées sur la valeur 2 000 FAU. L’écart type s(x
5
) de 

dispersion des valeurs étalon (en l’occurrence 10 FAU, cf. ) est déterminé en divisant l’écart 

type de dispersion des mesures sur les quinze suspensions mères, par la pente f ’ de la fonction d’éta-

lonnage moyenne (ces mesures présentent une distribution normale : test de Shapiro-Wilk).

On peut alors simuler la valeur étalon x
5k

 d’une suspension mère (indice k) par tirage aléatoire sui-

vant la distribution normale d’écart type s(x
5
) et de moyenne 2 000 FAU.

 Simulation des valeurs étalon x › ik inférieures à celle de la suspension mère
 La variance de la concentration d’une suspension étalon de valeur nominale x

i
, obtenue à partir 

d’une suspension mère de valeur x
5
 par des dilutions successives aboutissant à une dilution globale 

d’un facteur d
i
 (x

i
 = d

i
 x

5
), s’exprime de la manière suivante :

 

Le premier terme exprime l’effet de l’incertitude sur la suspension mère, et le second celui de l’in-

certitude sur le facteur de dilution.

Pour évaluer expérimentalement ce dernier, on a procédé à des lectures de turbidité sur quinze 

gammes d’étalons, préparées à partir de quinze suspensions mères différentes. Ces lectures ont 

permis d’établir une courbe d’étalonnage moyenne qui, par application inverse, a permis d’évaluer 

la dispersion des valeurs étalon à partir de la dispersion des lectures. Soit x
ik
 la kème valeur du ième 

niveau d’étalonnage obtenu.

Par ailleurs, on a calculé la valeur x
ik
 qui aurait été obtenue à partir de la kème suspension mère en 

l’absence d’incertitude sur la dilution :

x
ik
 = d

i
*  x

5k
 = d

i
*  f-1(y

5k
)

avec y
5k

 la valeur lue pour la kème suspension mère et d
i
* le facteur de dilution théorique. Puis on calcule :

 

Les écarts  suivent une distribution normale et ne présentent pas de biais (test de Student). Les 

suspensions filles sont donc, comme la suspension mère, centrées sur leurs valeurs étalons nomi-

nales respectives.



39BLPC   octobre/novembre 2008

On peut montrer que :

s2(
i
)  x

5
2 s2(

i
) = x

i
2 [s(

i
)/

i
 ]2 

La  montre les estimations de  obtenues pour quinze gammes, et l’incertitude affectant 

ces estimations calculées à partir d’une loi du Khi2. 

 Écarts types   
expérimentaux sur les 
étalons selon l’origine 

(suspension mère ou 
suspension fille) comparés 

à la répétabilité des 
mesures sur la formazine.

On voit que  varie assez peu. Les valeurs observées sont compatibles avec une incertitude sur 

les dilutions de 0,35 % à chaque dilution.

Quoi qu’il en soit, la contribution de l’incertitude sur la concentration de la suspension mère est 

assez voisine de celle de l’incertitude sur la dilution, toutes deux étant bien supérieures à l’incerti-

tude expérimentale.

On peut alors simuler les valeurs des suspensions filles x
ik
 par multiplications successives de x

5k
 par 

les facteurs de dilution, puis ajout des erreurs de dilution d’écarts types .

Simulation des indications moyennes de l’appareil y › ikm

Les indications moyennes de l’appareil y
ikm

 sont simulées par conversion des x
ik
 par la fonction 

d’étalonnage f réputée vraie. Ces valeurs sont affectées aux valeurs théoriques x
i
, l’utilisateur 

n’étant pas censé connaître les valeurs vraies x
ik
.

Simulation des valeurs individuelles expérimentales  › mesurées yijk

Les valeurs individuelles mesurées y
ijk

 (cinq répétitions) sont simulées à partir des moyennes y
ikm

 

par application de la répétabilité de l’appareil caractérisée par l’écart type s
exp

(y
0
) = s

exp
(x

0
)  f ’(x

0
) 

déterminé d’après les expérimentations d’étalonnage (cf. paragraphe « Résultats et discussion » 

dans la première partie et ). On remarque que l’écart type de répétabilité est bien inférieur 

aux écarts types caractérisant les erreurs de dispersion et de dilution, d’où une évaluation de ces 

dernières dans de bonnes conditions de précision.

Ajustement de la courbe d’étalonnage f › k simulée
Dans notre cas, où les incertitudes de répétabilité et sur les étalons varient avec la valeur mesurée, 

l’ajustement de la fonction d’étalonnage (ici un polynôme) est effectué de façon à rendre minimale 

la somme [7] :

 

avec les poids : 

(5)
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La répétabilité de l’appareil et la reproductibilité des étalons étant deux phénomènes indépendants, 

la variance s2
t
(x

i
) pour l’indication y

i
 de la valeur étalon x

i
 est, comme l’exprime le dénominateur 

de l’expression du poids g
i
, égale à la variance de répétabilité s2

exp
(x

i
) augmentée de la variance de 

x
i
 convertie en variance d’indication (multiplication par la pente de la relation d’étalonnage f’

k
(x

i
)). 

Cette pondération consiste donc à homogénéiser l’influence de la dispersion variable des points 

expérimentaux en divisant les écarts (y
ijk

 – f
k
(x

i
)) par l’écart type s

t
(x

i
) de cette dispersion.

L’ajustement de la courbe d’étalonnage simulée sur les points expérimentaux (x
ik
, y

ijk
) peut se faire 

simplement à l’aide d’un tableur (fonction DROITEREG d’Excel Microsoft par exemple), mais les 

fonctions d’ajustement ne permettent généralement pas de pondération. Pour tourner la difficulté, 

on peut, au lieu de pondérer un nombre égal n
i
 d’écarts suivant les niveaux, moduler le nombre 

d’écarts proportionnellement à l’inverse de la variance 1/ s2
t
(x

i
). On multiplie l’expression (5) par un 

facteur F suffisamment grand pour que les rapports F/ s2
t
(x

i
) prennent des valeurs voisines d’entiers 

N
i
. Cette expression s’écrit alors :

 

On voit donc que, pour pondérer les écarts d’une manière analogue aux g
i
, il suffit de simuler N

i
 

indications pour le niveau i, ce qui s’effectue aisément dans un tableur par copie de cellules.

Évaluation de l’incertitude d’étalonnage ›
On détermine alors les écarts entre les courbes d’étalonnage f

k
 simulées et la courbe f réputée vraie 

pour la valeur étalon courante x
0
. L’enveloppe de 68 % des écarts entre les courbes f

k
 et la courbe f 

détermine la zone de confiance correspondant à l’écart type s
étal

(y
0
).

Résultats et discussion 

En s’appuyant sur les valeurs d’écarts types de répétabilité et d’erreur de dilution déterminées 

d’après les résultats expérimentaux du paragraphe « Résultats et discussion » dans la première par-

tie, on a simulé par tirage aléatoire un grand nombre (250, permettant d’évaluer des écarts types à 

mieux que 10 % près) de séries expérimentales d’étalonnage.

La  montre les écarts types d’étalonnage s
étal

(x
0
) (on divise s

étal
(y

0
) par f’(x

0
) comme expliqué 

au paragraphe « Calcul de l’incertitude » dans la première partie, pour l’exprimer en valeurs étalon), 

calculés par les formules analytiques classiques et la simulation de Monte Carlo. 

(6)

 Écarts types d’étalonnage 
sur une gamme et cinq 

gammes, déterminés par 
les formules analytiques 

approchées et la simulation 
de Monte Carlo.

On constate que : 

l’incertitude d’étalonnage sur une gamme simulée par Monte Carlo est effectivement de l’ordre  –

de  fois supérieure à celle sur cinq gammes (comme prévu au paragraphe « Résultats et discus-

sion » dans la première partie) ;
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sur cinq gammes, la méthode analytique approchée surestime l’incertitude pour les faibles valeurs  –

(0,9 FAU contre 0,3 à 100 FAU), et la sous-estime d’environ un tiers pour les moyennes à fortes 

valeurs ; cela est dû au fait que la méthode analytique ne tient pas compte de la variabilité de la 

variance en fonction de la valeur mesurée.

Un intérêt supplémentaire de la méthode de Monte Carlo tient à la possibilité d’effectuer des simu-

lations complémentaires pour confirmer des hypothèses. Ainsi :

si on simule une incertitude nulle sur les suspensions mères, les écarts types déterminés par la méthode  –

analytique sur une gamme et sur cinq gammes sont voisines, ce qui confirme que la sous-estimation sur 

une gamme est due au fait que l’incertitude sur les suspensions mères n’est pas prise en compte ;

si on simule une variance liée constante, les écarts types déterminés sur cinq gammes par la  –

méthode analytique et la méthode de Monte Carlo sont voisines, ce qui confirme que les écarts 

constatés entre ces deux méthodes sont dus à la non-prise en compte, par la méthode analytique, de 

la variabilité de la variance liée en fonction de la valeur mesurée.

La variance caractérisant l’incertitude totale s’obtient en composant la variance d’étalonnage et la 

variance expérimentale.

La variance d’étalonnage s2
étal

 a été déterminée au paragraphe précédent, ainsi que la variance expérimen-

tale s2
exp

 dans le cadre de l’étalonnage à la formazine. Mais, pour un même appareil, la variance expéri-

mentale dépend du milieu de mesure. On a ainsi constaté que, dans des conditions de mesure identiques, 

les écarts types s
ERUi

 de répétabilité d’un échantillon d’eaux résiduaires urbaines (ERU) de temps sec 

varient de 0,8 à 8 FAU sur la gamme de 100 à 2 000 FAU, soit beaucoup plus que pour la formazine.

Pour déterminer l’incertitude totale de la mesure, il faut donc composer la variance d’étalonnage 

avec la variance expérimentale déterminée, soit sur la formazine (pour les étalonnages, vérifications 

et réglages), soit sur les eaux résiduaires (pour l’établissement des relations entre polluants et tur-

bidité). Si on fait la moyenne de n
0
 mesurages y

i
 indépendants sur les eaux résiduaires, la variance 

expérimentale s2
expERU

 correspondant à la turbidité moyenne y
0m

 s’exprime alors de la façon suivante 

en fonction de l’écart type s
ERU

 déterminé avec le même appareil sur ces eaux :

 

La division par f ’(x
0
) s’explique comme au paragraphe « Calcul de l’incertitude » dans la première 

partie, par la conversion de l’indication y
0m

 en valeur étalon x
0
 via l’inverse de la fonction d’étalon-

nage .

(7)

 Composition de l’écart 
type expérimental sur 

y
0m

 et de l’écart type 
d’étalonnage pour 

déterminer l’incertitude 
totale sur le mesurage de 

turbidité x
0
.
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Dans le cas général, les sources d’erreur expérimentale et d’étalonnage sont indépendantes. La 

variance totale s2
totale

(x
0
) sur l’estimation de x

0
 s’obtient alors en faisant la somme des variances 

correspondant à ces deux sources d’erreur :

 s2
totale

(x
0
) = s2

étal
(x

0
) +s2

expERU
(x

0
)  (8)

Les mesurages de turbidité sur échantillons d’eaux résiduaires (tamisées à 2 mm pour éliminer les 

grosses matières en suspension non représentatives) présentent une distribution normale. L’écart 

type d’incertitude ainsi calculé est assimilé à un intervalle de confiance à 68 %. Pour passer au 

niveau de confiance plus classique de 95 %, qui correspond au risque  = 5 % que la valeur soit 

située en dehors de l’intervalle, on multiplie cet écart type par un facteur d’élargissement corres-

pondant à la variable de Student ,  étant le nombre de degrés de liberté (égal au 

nombre N de mesurages d’étalonnage moins le degré du polynôme). Le résultat du mesurage x
0
 de 

turbidité affecté de l’incertitude totale s’exprime donc de la manière suivante :

 

Cependant comme le nombre n
0
 de mesurages pour déterminer la turbidité moyenne est différent du 

nombre de mesures d’étalonnage N, le nombre de degrés de liberté pour déterminer  se 

calcule par la formule de Welch [7] :

 

Avec  moins le degré du polynôme d’étalonnage, et .

On constate sur la  que l’écart type expérimental sur une moyenne de cinq répétitions 

s
expERU

(x
0
) est voisin de l’écart type d’étalonnage sur cinq gammes s

étal
(x

0
), le cumul des deux abou-

tissant à un écart type d’incertitude totale de 1 à 8 FAU, soit 0,6 à 1 % de la valeur mesurée.

La  montre la dégradation de la précision si l’on procède à un étalonnage sur une seule 

gamme, en supposant qu’on dispose par ailleurs d’une évaluation de l’incertitude sur les étalons. 

Cette dégradation est faible puisque les incertitudes restent inférieures à 1,5 %. Le gain maximal 

d’un facteur  n’est ici pas atteint, en particulier pour les faibles valeurs, du fait de l’importance 

de l’incertitude expérimentale sur les eaux résiduaires urbaines.

(9)

(10)

 Écarts types d’incertitude 
totale, d’étalonnage 

et de répétabilité pour 
un étalonnage sur cinq 

gammes et une moyenne 
sur cinq répétitions.
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L’évaluation de l’incertitude des mesurages de turbidité avec les formules analytiques courantes 

donne des résultats erronés et souvent optimistes car :

la dispersion des mesurages augmente avec la valeur mesurée ; –

ces formules ne prennent pas en compte l’incertitude sur les étalons. –

 Une méthode analytique plus évoluée permettrait de prendre en compte ces éléments, mais la 

méthode de Monte Carlo est plus simple à mettre en œuvre. Pour les deux méthodes, il faut bien sûr 

que l’on ait acquis les informations nécessaires, par exemple par des mesures sur des répétitions de 

gammes étalon, préparées à partir de suspensions mères différentes. La méthode de Monte Carlo 

permet en outre de tester facilement l’impact de différentes hypothèses concernant la structure des 

erreurs, pour compenser un manque d’information ou pour analyser les insuffisances potentielles 

de la méthode analytique classique. Elle est également bien adaptée aux linéarisations par des poly-

nômes de degrés supérieurs à deux.

Finalement l’incertitude totale à court terme du mesurage de la turbidité sur échantillon est très 

satisfaisante (moins de 1,5 % au-dessus de 100 FAU), pourvu que l’appareil soit linéarisé conve-

nablement. Un tel résultat peut être obtenu dans des conditions de mise en œuvre proches de celles 

du laboratoire : maîtrise des variables d’environnement (température, luminosité), préparation et 

conservation des étalons, homogénéisation pendant le mesurage. La poursuite de l’étude portera 

sur l’évaluation de l’incertitude à long terme in situ, prenant en compte l’influence des variables 

d’environnement et la dérive.

 Incertitudes relatives 
totales au niveau de 

confiance de 95 % pour 
deux types d’étalonnage.
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