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Contribution à la quantification 
de la robustesse structurale

1. INTRODUCTION

Le cadre réglementaire des Eurocodes préconise qu’une structure doit être conçue pour résis-
ter à des évènements exceptionnels (incendies, explosions, chocs ou conséquences d’une erreur 
humaine), sans être endommagée de manière disproportionnée par rapport à la cause initiatrice. 
Un enjeu majeur est donc de pouvoir apprécier le passage d’une défaillance localisée/initiatrice à 
la défaillance globale du système structural. Deux exemples marquants de défaillance structurale 
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■  RÉSUMÉ
Les Eurocodes définissent la robustesse structurale comme « l’aptitude d’une 
structure à résister à des événements tels que les incendies, les explosions,  
les chocs ou les conséquences d’une erreur humaine, sans présenter de dégâts 
disproportionnés par rapport à la cause d’origine ». Cette définition permet 
d’intégrer explicitement des concepts de défaillances locale (dommages de 
faible ampleur) et globale (dommages associés à des conséquences structurales 
majeures).
Cet article propose un cadre probabiliste pour quantifier la robustesse structurale 
en mesurant l’impact d’une défaillance localisée sur la défaillance globale du 
système. La démarche proposée consiste à identifier les chemins de défaillance 
les plus probables partant d’une défaillance localisée. L’écart entre les 
défaillances locale et globale dans le chemin de défaillance avec la plus grande 
probabilité, considéré comme le chemin de référence, est alors quantifié pour 
construire des indices de robustesse. L’identification des chemins de défaillance 
les plus probables est effectuée au travers de la méthode des « branches et  
bornes ». Deux exemples d’application sont considérés pour illustrer la 
méthodologie proposée.

Contribution to the quantification of structural robustness
■  ABSTRACT
The Eurocodes define structural robustness as “the ability of a structure to 
withstand events like fire, explosions, impact or the consequences of human error, 
without being damaged to an extent disproportionate to the original cause”. Such 
a definition clearly involves concepts of local (relatively small damage) and global 
(associated with major structural consequences) failures. 
This paper proposes a probabilistic framework to quantify structural robustness  
by appreciating the impact of local failure on the overall system failure.  
The proposed approach is introduced to determine significant failure sequences. 
The gap between local and global failures in the failure path with the largest 
probability of occurrence, considered as the reference failure path, is then 
quantified to build some robustness indices. Stochastically dominant failure  
paths are identified with reasonable computational times by using  
the branch-and-bound method. Two numerical examples are considered  
to illustrate the proposed methodology.
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illustrant l’impact d’une défaillance locale initiatrice sur la défaillance globale de la structure sont 
l’effondrement partiel et progressif de la tour du Ronan Point à Canning Town à Londres, le 16 mai 
1968, causé par une explosion de gaz naturel au dix-huitième étage, qui a entraîné l’effondrement 
total de l’angle sud-ouest de l’édifice et causé la mort de quatre personnes, et, plus récemment,  
l’effondrement total du pont autoroutier de l’Interstate 35-Ouest du Mississipi à Minneapolis 
(USA), le 1er août 2007, dû à la fissuration des goussets de la poutre principale en treillis, qui a 
provoqué la mort de 13 personnes et en a blessé 145 autres.

Cet article a pour objectif de proposer une approche générale pour qualifier et quantifier la robus-
tesse structurale, en caractérisant l’écart entre un dysfonctionnement local et un dysfonctionne-
ment global et la probabilité du système de passer d’un état de dysfonctionnement local à un état 
de dysfonctionnement global. Ces travaux ont fait l’objet d’une présentation aux Journées 2013  
de l’Association Française de Génie Civil (AFGC).

On trouve dans la littérature plusieurs définitions du terme robustesse (tableau 1).

Dans cette étude, la notion de robustesse est liée à la définition donnée dans les normes de struc-
tures (tableau 1). De nombreuses mesures de la robustesse structurale ont été proposées par ailleurs 
(Faber et al., 2006 ; Baker et al., 2008 ; Biondini et Restelli, 2008 ; Starossek et Haberland, 2008a, 
2008b, etc.). Il en ressort qu’il existe globalement deux familles d’indice de robustesse probabiliste 
pour la quantification de la robustesse structurale :

 – la première famille compare les probabilités de défaillance d’un système à l’état intègre et à l’état 
endommagé. Cette première approche présente la limite de ne pas caractériser la cinématique de 
passage d’un dysfonctionnement local à un dysfonctionnement global du sys tème structural ;
 – la deuxième famille utilise une analyse de risque et compare les conséquences d’un dysfonc-

tionnement local aux conséquences d’un dysfonctionnement global du système. Cette deuxième 
approche, tout en définissant un cadre théorique, ne précise pas de mise en œuvre pratique. 

L’approche proposée dans cet article vise à revoir ces limites. C’est dans cette optique qu’elle 
quantifie l’impact de dommages localisés sur la défaillance globale du système. Étant donné que les 
dommages constatés peuvent être faibles ou élevés à l’échelle globale de la structure, c’est l’évalua-
tion des dommages constatés qui permet de déduire le niveau de robustesse structurale. Un impact 
faible caractérise alors une structure robuste, tandis qu’un impact fort caractérise une structure  
non robuste.

tableau 1
Définitions du terme 

« robustesse » dans divers 
domaines scientifiques 

(Faber et al., 2006).

Ingénierie du logiciel Capacité d’un système à réagir de manière appropriée aux circonstances 
anormales (Meyer, 1997).

Développement  
des produits et contrôle 

qualité

Mesure de la capacité d’un processus de production à ne pas être affecté  
par de petites variations délibérées de paramètres internes, de manière  
à fournir une indication de la fiabilité lors d’une utilisation normale.

Écosystèmes
Capacité d’un système à maintenir sa fonction même en présence  
de changements dans sa structure interne ou dans l’environnement extérieur 
(Callaway et al., 2000).

Statistiques Insensibilité d’une technique statistique aux petits écarts dans les hypothèses 
(Huber, 1996).

Normes « Structures »
Capacité d’une structure à soutenir des dommages de sorte que les  
conséquences d’une défaillance structurale ne soient pas disproportionnées 
par rapport à l’effet provocateur de la défaillance (CEN, 1994).

Langage
Mesure de la capacité de l’homme à communiquer malgré une information 
incomplète ou ambigüe, et la présence d’un élément constant de surprise 
(Briscoe, 1997).
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2. CARACTÉRISATION DE LA ROBUSTESSE STRUCTURALE

 ■ 2.1. Analyse de la robustesse structurale dans un cadre général

Pour analyser la robustesse structurale dans un cadre général, il faut commencer par définir la 
défaillance locale et la défaillance globale. La défaillance locale peut intervenir au niveau d’un 
élément, d’un sous-ensemble d’éléments ou d’une zone critique : on parle de mode de défaillance. 
La défaillance globale fait référence à une fonction critique de la structure qui n’est plus assurée, 
suite à l’occurrence d’un certain nombre de dysfonctionnements localisés. La définition des dys-
fonctionnements local et global permet d’identifier les chemins de défaillance dominants/significa-
tifs c’est-à-dire avec la plus grande probabilité d’occurrence. En effet, la défaillance d’un ouvrage 
est définie par l’occurrence d’un chemin de défaillance complet (c’est-à-dire conduisant au cri-
tère de dysfonctionnement global). Il existe deux approches permettant d’identifier les chemins de 
défaillance dominants (Kagho, 2013) : une analyse par l’intérieur, qui étudie la manière succes-
sive et séquentielle avec laquelle apparaît la défaillance, et une analyse par l’extérieur, qui analyse 
l’occurrence simultanée de plusieurs modes de défaillance, sans regarder le cheminement interne 
de la défaillance.

 ■ 2.2. Démarche proposée

Pour tenir compte des multiples incertitudes inhérentes au problème de robustesse structurale (les 
fluctuations de chargements, la variabilité des propriétés mécaniques des matériaux, les incertitudes 
et imperfections des modèles d’analyse…), un cadre probabiliste a été retenu. Dans un premier 
temps, le système doit être défini et la structure modélisée. Dans un deuxième temps, les dys-
fonctionnements local et global doivent être définis, pour permettre l’identification des chemins 
de défaillance les plus probables en utilisant soit une analyse par l’intérieur, soit une analyse par 
l’extérieur telles que présentées précédemment.

L’écart entre les probabilités d’occurrence des dysfonctionnements aux échelles locale et globale 
permettra de quantifier la robustesse structurale. Dans la suite de cet article, seule l’approche par 
l’intérieur est utilisée dans la démarche de quantification de la robustesse structurale.

 ■ 2.3. Détermination de la défaillance à l’échelle globale

La détermination de la défaillance à l’échelle globale du système à l’aide d’une approche par l’inté-
rieur consiste à utiliser une méthode permettant d’identifier les chemins de défaillance les plus 
probables. En effet, partant d’une défaillance locale (mode de défaillance donné), le nombre de che-
mins de défaillance menant au dysfonctionnement global peut être très élevé et le nombre de modes 
de défaillance peut lui-même être très élevé. C’est pourquoi il est crucial d’utiliser une méthode 
permettant de réduire significativement le nombre de chemins de défaillance pris en compte en 
ne considérant que les chemins de défaillance ayant des probabilités d’occurrence significatives.  
Il existe dans la littérature plusieurs méthodes pour l’identification des chemins de défaillance domi-
nants, parmi lesquelles on peut citer la méthode des branches et bornes (Okada et al., 1984 ; Thoft-
Christensen et Murotsu, 1986), la méthode du β-unzipping (Thoft-Christensen et Murotsu, 1986), la 
méthode du β-unzipping avec bornage (Kagho et al., 2013), la méthode des configurations stables 
(Ditlevsen et Bjerager, 1984 ; Quek et Ang, 1986, 1990), la méthode des énumérations tronquées 
(Drebes, 1969). Dans la suite de cet article, seule la méthode des branches et bornes est utilisée.

 › 2.3.1. Méthode des branches et bornes
La méthode des branches et bornes est une méthode de parcours d’arbres de défaillance permettant 
de n’identifier que les chemins de défaillance dominants, c’est-à-dire des chemins dont l’occur-
rence affecte le niveau de performance globale du système. L’idée majeure de la méthode est 
de parcourir l’arbre d’évènements jusqu’à obtenir des chemins de défaillance complets (occur-
rence du dysfonctionnement global). À chaque nœud, la probabilité de défaillance du système est  
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comparée à celle du chemin le plus probable identifié. Les branches pour lesquelles la probabilité de 
défaillance est inférieure à celle du chemin le plus probable sont alors écartées. L’objectif est de ne 
conserver que les chemins de défaillance prédominants, ayant été sélectionnés lors de leur inclusion 
dans le système en série final (Kagho et al., 2011).

 › 2.3.2. Étude fiabiliste
Un chemin de défaillance noté q est considéré (ce chemin pouvant par exemple être le chemin  
de défaillance avec la plus grande probabilité d’occurrence), avec un ordre séquentiel d’apparition 
de la défaillance q1, q2, …, qn, où les qi sont les éléments défaillants et n la longueur du chemin 
de ruine. Avec une analyse par l’intérieur, il est possible d’exprimer la probabilité locale comme 
la probabilité de défaillance du premier élément dans le chemin de référence, et donc d’écrire  
Plocale = Pf(q1) = P[g(q1) < 0], avec Pf(q1) probabilité de défaillance liée à l’élément q1 et g(q1) 
marge d’évènement liée à l’élément q1. Il est également possible d’exprimer la probabilité globale  
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les éléments q1, q2, …, qi-1 sont déjà défaillants. Manifestement, g q g qq q
ii1 1 1

... − ( ) = ( )  pour i = 1 
(Kagho, 2013). 

 › 2.3.3. Mesure de la robustesse structurale
En adéquation avec le paragraphe précédent, la probabilité locale Plocale est la probabilité de 
défaillance du premier mode de défaillance q1 dans le chemin de défaillance partant de q1, et la 
probabilité globale Plocale est la probabilité d’occurrence du chemin de défaillance le plus probable 
(égale à la probabilité de défaillance du dernier mode de défaillance dans le chemin de défaillance 
le plus probable). 

Un premier indice de robustesse est proposé sur la base d’un rapport entre les probabilités de 
défaillance locale et globale, comme défini par la formule (1) (Kagho, 2013) :

 
I

P
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,1 1= − . (1)

Ce premier indice de robustesse compare directement les probabilités locale et globale. L’indice de 
robustesse Ir,1 varie dans l’intervalle [0,1[. Une valeur proche de 1 indique une structure infiniment 
robuste et une valeur proche de 0 indique une structure non robuste.

Un second indice de robustesse est défini par la formule (2) (Kagho, 2013) :
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Ce second indice de robustesse compare le risque (R = C P) à l’échelle locale et globale. Cet indice 
peut également s’écrire de la manière suivante :
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Comme pour l’indice Ir,1, une valeur de Ir,2 proche de 1 indique une structure infiniment robuste et 
une valeur proche de 0 indique une structure non robuste.

 › 2.3.4. Remarque
Kagho (2013) a montré que l’indice de robustesse le plus critique (c’est-à-dire le plus faible) n’était 
pas toujours celui calculé à partir du chemin de défaillance le plus probable. En effet, considérant 
tous les modes de défaillance du système, on peut identifier le chemin de défaillance le plus pro-
bable issue de la défaillance de chaque mode de défaillance. L’indice de robustesse critique est 
alors le plus petit indice de robustesse calculé. Cet indice est noté min(lk

r,1) s’il est calculé avec lr,1 
ou min(lk

r,2) s’il est calculé avec lr,2, où k est le mode de défaillance sujet de la défaillance locale.  
En effet, l’indice de robustesse critique s’obtient à partir d’un chemin de défaillance ayant une 
probabilité d’occurrence plus faible que celle du chemin le plus probable identifié; Il s’agit d’un 
chemin de défaillance peu probable mais donc l’occurrence serait très préjudiciable pour la struc-
ture. Cet indice de robustesse critique doit être pris en compte dans la quantification de la robustesse 
structurale. C’est pourquoi une approche par analyse de risque est justifiée (Baker et al., 2008 ; 
Faber et al., 2006, 2011 ; JCSS, 2001, 2008).

 ■ 2.4. Couplage

Dans cette étude, la technique des « branches et bornes » a été implémentée sous MATLAB© et un 
couplage a été réalisé entre le code de calcul CALFEM© utilisant des éléments poutres et la boîte 
à outils de fiabilité RELIABTBX développée à l’IFSTTAR (figure 1).

 ■ 2.5. Notion d’état limite

Les états limites sont des états d’une construction qui ne doivent pas être atteints pour que la struc-
ture continue de satisfaire les exigences structurales et fonctionnelles pour lesquelles elle a été 
conçue. La vérification d’une structure consiste à s’assurer que de tels états ne peuvent pas être 
atteints ou dépassés. Deux types d’exigences sont généralement considérés : 

 – une exigence d’aptitude au service, nécessaire au maintien de l’exploitation de la structure.  
Les états limites de service associés peuvent concerner une flèche ou un niveau de contraintes 
excessifs, la déformabilité de la structure ou encore certains effets dynamiques ; 
 – une exigence de sécurité, pour être en mesure de résister à toutes les actions qu’elle aura à subir 

pendant sa construction et son utilisation prévue en utilisation normale. L’état limite ultime peut 
concerner une perte d’équilibre statique, une rupture d’élément, une déformation plastique exces-
sive, des instabilités de forme (flambement, déversement, voilement, …), une défaillance due à la 
transformation en mécanisme de tout ou une partie de la structure, etc.

Dans cet article, le premier exemple est associé à l’état limite ultime, avec formation d’un méca-
nisme de ruine, dû à la ruine d’éléments de structure par allongement ou raccourcissement, transfor-
mant la structure en un système instable. Le second exemple est associé à un état limite de service 
vis-à-vis de la fissuration étendue du béton.

figure 1
Illustration du couplage 

effectué.
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3.  APPLICATION À UN ÉTAT LIMITE ULTIME AVEC PERTE  
DE STABILITÉ

La poutre de pont en treillis représentée sur la figure 2 est considérée dans ce paragraphe. Les élé-
ments constitutifs sont des éléments barres, reliés entre eux par des joints articulés. Cette structure, 
articulée à ses deux extrémités, est soumise à l’action de douze forces statiques ponctuelles.

La poutre est constituée de vingt-cinq éléments « barre » de section A = 1,44.10-2 m2 et d’inertie 
I = 1728.10-8 m4. Le module d’Young du matériau est égal à E = 2.1011 Pa. La hauteur de la poutre 
vaut h = 4 m et la portée 6 x 3m. La limite élastique du matériau et la charge appliquée F1 sont des 
variables aléatoires indépendantes suivant une loi normale dont les paramètres sont indiqués dans 
le tableau 2. 

Les chemins de défaillance dominants identifiés par la méthode des branches et bornes sont 
représentés sur la figure 3a. Il est observé que le chemin de ruine 8→9→16 est le plus probable.  
Le mécanisme de défaillance correspondant est représenté sur la figure 3b. Les résultats obtenus 
sont détaillés dans le tableau 3.

figure 2
Structure étudiée.

F 1 F 1 F 1 F 1 F 1

F 1 F 1F 1 F 1 F 1 F 1 F 1

1 2 3 4 5 6

7 8 9 10

11 12 14 16 18 2013 15 17 19 2122 23 24 25

tableau 2
Variables aléatoires 

considérées.

Variables Loi Moyenne Coefficient de variation

F1
Normale

200 000 N 30%

fy 250.106 Pa 2%

tableau 3
Résultats obtenus.

Méthodes 
utilisées Nme Chemin le plus 

probable Plocale Pglobale lr,1
Ir,2

(a = 100)
Temps de 
calculs (s)

Branches 
et bornes 1 8-9-16 2,0946.10-9 5,9937.10-10 0,71 0,03 3392

Nme – nombre de mécanismes identifiés

figure 3
a) Arbre de défaillance de 

la méthode des branches 
et bornes,

b) Mécanisme le plus 
probable correspondant au 
chemin de ruine 8→9→16.

(a)
8

9

16

(b)

F 1 F 1 F 1 F 1 F 1

F 1 F 1F 1 F 1 F 1 F 1 F 1

1 2 3 4 5 6

7 8 9 10

11 12 14 16 18 2013 15 17 19 2122 23 24 25

a b
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4.  APPLICATION À UN ÉTAT LIMITE DE SERVICE  
AVEC FISSURATION LOCALE ET GLOBALE

Le cas d’étude est une des poutres du VIPP de Merlebach (Cremona, 2007), ouvrage construit en 
1968 et démoli en 2004 (figure 4). Cet ouvrage permettait à l’autoroute A320 de franchir des voies 
ferrées et la rivière « Roselle » à Freyming – Merlebach. Long de 0,2 km, il comportait deux tabliers 
constitués de six travées isostatiques d’une longueur de 32,50 m. Les travées de chaque tablier 
comportaient chacune cinq poutres (de hauteur de 2,10 m) espacées de 3,15 m et reliées entre elles 
par un hourdis de 1,65 m de large et de 0,18 m d’épaisseur. La précontrainte longitudinale dans les 
poutres était assurée par 10 câbles STUP 12Ø8 (figure 4b), dont les six premiers étaient ancrés à 
l’about (Tessier et al., 2005 ; Cremona, 2007 ; Mohammadkhani-Shali, 2007).

Cette étude considère une des poutres du VIPP. Pour ce type de structure, plusieurs types d’analyses 
de la robustesse sont envisageables :

 – l’étude de la propagation d’une défaillance localisée sur une poutre à une défaillance plus globale 
de cette même poutre ;
 – l’étude de la propagation d’une défaillance locale sur une poutre à une ou plusieurs autre(s) 

poutre(s).

Seul le premier cas est considéré dans cette analyse. Plus particulièrement, la défaillance locale est 
supposée être une hauteur de zone fissurée dans le talon de la poutre, dépassant un seuil critique et 
la défaillance globale est supposée être un volume total de béton fissuré excédant un seuil préala-
blement défini (Kagho, 2013).

1.50m

0.65m

2.
10

m0.18m

a. Vue d’ensemble.

b. Section de poutre à mi-travée.
figure 4

Viaduc de Merlebach.
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La poutre considérée repose sur deux appuis simples et est soumise à une charge ponctuelle P appli-
quée à mi- travée. La modélisation de cette structure est réalisée à l’aide du logiciel SETRA-ST1©, 
qui est un logiciel de calcul de structures à barres (figure 5a). Cette étude reprend la modélisa-
tion de la poutre VIPP développée dans le cadre d’une étude antérieure sur l’ouvrage du VIPP de 
Merlebach (Cremona, 2007) ayant eu pour objectif de prendre en compte la fissuration dans le calcul 
d’une poutre isostatique en béton précontraint et de mieux appréhender les déformations de la poutre 
fonctionnant en mode dégradé. La modélisation de la poutre est effectuée de telle sorte qu’elle soit 
constituée de trois zones, les deux zones d’extrémité d’une longueur de 15,25 m constituées chacune 
d’une barre, et la zone centrale de 2 m, constituée de 20 barres (figure 5b). La zone d’étude est située 
à mi-travée dans la zone centrale et comporte sept sections numérotées de 1 à 7 (figure 5c).

La modélisation sous ST1 de la poutre étudiée est représentée sur la figure 5a. Cette modélisation 
représente les câbles de précontrainte en rouge, la fibre neutre de la poutre en noir et la zone étudiée 
en jaune. Cette zone est détaillée sur la figure 5c. En ce qui concerne les caractéristiques de la pré-
contrainte, la diminution de section des câbles ainsi que la diminution de la tension des câbles de 
précontrainte ont été prises en compte uniquement par une diminution de la tension dans les câbles. 
Cette valeur de tension est supposée intégrer les pertes de précontrainte instantanées et différées 
ainsi que les éventuelles pertes de section des câbles (Kagho, 2013).

 ■ 4.1. Modélisation de la défaillance

L’étude a consisté à analyser la propagation d’une fissuration dans la poutre précontrainte. 
Lorsqu’une section est défaillante (hauteur fissurée en fibre inférieure supérieure à une hauteur 
de fissure critique), la géométrie de la poutre est modifiée au droit de cette section en réduisant la 
hauteur du talon d’une épaisseur forfaitaire en partie inférieure de celui-ci, ce qui se caractérise par 
une élévation de la position du centre de gravité de la section.

La défaillance globale considérée correspond dans cette étude à l’atteinte ou au dépassement du 
volume critique de béton fissuré calculé sur les différentes sections étudiées. Le volume de béton 
fissuré calculé sur les sept sections étudiées de la figure 5 s’exprime par :

 V e I hfissuré talon i fissure
i

=
=
∑section ,

1

7
 (5)

où esection = 0,10 m est l’espacement entre les sections étudiées, Italon la largeur du talon et hi,fissure la 
hauteur de fissure calculée à la section i.

Afin d’analyser l’impact de la modélisation des paramètres de calcul sur l’indice de robustesse, de 
nouvelles analyses structurales ont été menées avec la structure modélisée comme précédemment 
(la zone étudiée est celle représentée sur la figure 5c). L’état limite considéré pour déterminer 
la défaillance locale est l’apparition d’une zone de béton fissurée d’au moins 10 cm de hauteur 
(hfissure,critique = 0,10 m).
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figure 5
Modèle de calcul.
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La valeur moyenne de la tension dans les câbles de précontrainte σcâbles est par ailleurs prise égale à 
800 MPa (Kagho, 2013). Les lois statistiques des variables aléatoires utilisées sont indiquées dans 
le tableau 4.

 ■ 4.2. Analyse de la robustesse structurale

Les résultats obtenus et les arbres de défaillance correspondants sont reportés dans le tableau 5.

Les résultats obtenus montrent que c’est le chemin de défaillance 5→3 qui est le plus probable. 
Ce chemin ne part pas de la section où est appliquée la charge. Une étude a été réalisée au point 
de fonctionnement ayant permis le calcul de la probabilité de défaillance, pour regarder l’état de 
fissuration dans la poutre à chaque étape de l’arbre de défaillance. Les résultats sont reportés sur la 
figure 6.

On remarque que, lorsque la section/nœud 5 est défaillant(e) et qu’on regarde la probabilité au 
nœud 3, on a un plus grand volume de béton fissuré dans la zone étudiée que sur les chemins 4→2 et 
5→4 et aussi une plus grande probabilité de défaillance. C’est la raison pour laquelle l’algorithme 
des branches et bornes a identifié le chemin 5→3 comme étant le chemin de défaillance le plus 
probable, car le critère de défaillance global est un volume de béton fissuré supérieur au volume de 

tableau 4
Lois statistiques  

des variables aléatoires 
utilisées.

Variables P ρ σcâbles σh
trac σ1

trac σ2
trac σ3

trac σ4
trac σ5

trac σ6
trac σ7

trac hfissure,critique

Loi normale lognormale

Moyenne 0,79 
MN

2,5  
t/m3

800 
MPa

3,27 
MPa

3,27 
MPa

3,27 
MPa

3,27 
MPa

3,27 
MPa

3,27 
MPa

3,27 
MPa

3,27 
MPa 0,10 m

Coefficient 
de variation 5 % 5 % 9 % 20 % 20 % 20 % 20 % 20 % 20 % 20 % 20 % 3 %

tableau 5
Résultats obtenus.

Charge 
appliquée  

à la section 4 
(mi-travée)

Ir,1 Ir,2

Chemin de 
défaillance le 
plus probable 

identifié

Probabilité 
d’occurrence 
du chemin le 
plus probable

Arbre de défaillance  
de la méthode des branches  

et bornes

4

P

mi travée

0,18 0,01 5→3 P = 3, 551.10−1
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béton critique Vol.critique = 0,07 m3. Comme on peut le constater sur la figure 6, avec le chemin 
4→2 on atteint aussi le critère global de défaillance. Cependant, ce chemin n’est pas sélectionné à 
cause de sa plus faible probabilité de défaillance, par rapport à celle du chemin 5→3.

5. CONCLUSIONS ET PERSPECTIVES

La communauté scientifique et technique a pris conscience ces dernières décennies de l’impor-
tance de la robustesse structurale des ouvrages du génie civil. Un des problèmes majeurs en ce qui 
concerne son incorporation dans les méthodes actuelles de conception et de gestion est de pouvoir 
la quantifier. Les travaux menés dans cette étude ont permis de proposer une démarche probabiliste 
pour la quantification de la robustesse structurale. La démarche proposée s’appuie sur l’étude d’une 
série de propagation de défaillance dans l’ouvrage afin d’identifier les dysfonctionnements globaux 
les plus probables et d’en déduire un écart entre la probabilité d’occurrence d’un dommage local et 
celle d’un dommage global. Cette démarche a été appliquée dans le cas où les états limites sont des 
états limites de service ou des états limites ultimes, ce qui montre que la méthodologie proposée 
peut s’appliquer de manière générale à différents types de défaillances dès lors que les concepts de 
défaillances locales et globales peuvent être caractérisés et modélisés. Une réflexion supplémen-
taire est nécessaire quant à la mise en œuvre opérationnelle des indices proposés et à leur inclusion 
dans un cadre réglementaire.
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Outre la maîtrise des méthodes d’analyse (validation, précision…), l’enjeu principal concerne le 
choix de la méthode la mieux adaptée à la problématique posée. La manière de résoudre le problème 
dépend à la fois de la finesse d’analyse souhaitée mais également de la richesse des données disponi-
bles. L’influence de la stratification du sol sur l’amplification des ondes sismiques est ainsi largement 
reconnue, mais la connaissance de la géologie du site considéré est généralement imparfaite.

ANAlyse vibRAtoiRe des effets de site

 ■ Différents types d’approches vibratoires

L’utilisation d’approches modales pour l’analyse vibratoire de structures géologiques est de plus 
en plus courante (Paolucci, 1999 ; Semblat et Pecker, 2009). Ces approches fournissent en général 
la fréquence fondamentale de structures géologiques en prenant en compte leur géométrie (Bard 
et Bouchon, 1985 ; Paolucci, 1999 ; Semblat et al., 2003) ou l’inhomogénéité de leurs caractéris-
tiques mécaniques (Dobry et al., 1976 ; Hadjian, 2002). À partir de différents types d’hypothèses, 
il est ainsi possible d’estimer la fréquence fondamentale de certains remplissage sédimentaires.  
Il est néanmoins difficile de comparer directement différentes fréquences en termes d’amplification 
du mouvement sismique.

 › méthodes adaptées aux remplissages unidimensionnels
Dobry et al. (1976) ont, les premiers, proposé une analyse modale complète de la résonance vibra-
toire de couches géologiques. Pour une couche horizontale homogène, non-homogène (variation 
linéaire du module de cisaillement) ou un remplissage multicouche horizontal, ils ont proposé  
d’exprimer analytiquement la période fondamentale des structures géologiques. Pour une couche 
horizontale d’épaisseur H et de module de cisaillement G variant linéairement avec la profondeur z, 
ils ont obtenu l’expression suivante :

 G
G

K K
H

z
H

= +
-2

21  (1)

où K G GH= 0 / , G0 et GH représentent les modules au sommet et à la base de la couche.

Pour estimer la période T de la couche, Dobry et al. utilisent les caractéristiques d’une couche 
uniforme équivalente en écrivant T = 4H/Veq où V Geq eq= / r  à la profondeur équivalente zeq  
donnée par :
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où a1 est la 1re racine de l’équation :

 J a Y Ka J Ka Y a0 1 1 1 1 1 0 1 0( ) ( ) ( ) ( )- =  (3)

Ji et Yi représentent les fonctions de Bessel et de Weber Bessel (respectivement) d’ordre i. Dobry 
et al. (1976) ont aussi proposé une généralisation de ces résultats pour des remplissages bicouches 
ou multicouches. Des cas similaires ont été étudiés par Hadjian (2002) en considérant une approche 
itérative pour estimer la période fondamentale de remplissages multicouches.

 › méthodes pour des remplissages 2D ou 3D
Pour caractériser la résonance de bassins rectangulaires, Bard and Bouchon (1985) ont proposé 
une relation simple donnant la fréquence fondamentale en fonction de la célérité des ondes et d’un 
facteur de forme du bassin, soit :

 f
V
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h
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S
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24
1= +  (4)

où h est la profondeur et w la largeur du bassin.
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Outre la maîtrise des méthodes d’analyse (validation, précision…), l’enjeu principal concerne le 
choix de la méthode la mieux adaptée à la problématique posée. La manière de résoudre le problème 
dépend à la fois de la finesse d’analyse souhaitée mais également de la richesse des données disponi-
bles. L’influence de la stratification du sol sur l’amplification des ondes sismiques est ainsi largement 
reconnue, mais la connaissance de la géologie du site considéré est généralement imparfaite.

analyse vibratoire des effets de site

 ■ Différents types d’approches vibratoires

L’utilisation d’approches modales pour l’analyse vibratoire de structures géologiques est de plus 
en plus courante (Paolucci, 1999 ; Semblat et Pecker, 2009). Ces approches fournissent en général 
la fréquence fondamentale de structures géologiques en prenant en compte leur géométrie (Bard 
et Bouchon, 1985 ; Paolucci, 1999 ; Semblat et al., 2003) ou l’inhomogénéité de leurs caractéris-
tiques mécaniques (Dobry et al., 1976 ; Hadjian, 2002). À partir de différents types d’hypothèses, 
il est ainsi possible d’estimer la fréquence fondamentale de certains remplissage sédimentaires.  
Il est néanmoins difficile de comparer directement différentes fréquences en termes d’amplification 
du mouvement sismique.

 › méthodes adaptées aux remplissages unidimensionnels
Dobry et al. (1976) ont, les premiers, proposé une analyse modale complète de la résonance vibra-
toire de couches géologiques. Pour une couche horizontale homogène, non-homogène (variation 
linéaire du module de cisaillement) ou un remplissage multicouche horizontal, ils ont proposé  
d’exprimer analytiquement la période fondamentale des structures géologiques. Pour une couche 
horizontale d’épaisseur H et de module de cisaillement G variant linéairement avec la profondeur z, 
ils ont obtenu l’expression suivante :
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où K G GH= 0 / , G0 et GH représentent les modules au sommet et à la base de la couche.

Pour estimer la période T de la couche, Dobry et al. utilisent les caractéristiques d’une couche 
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Ji et Yi représentent les fonctions de Bessel et de Weber Bessel (respectivement) d’ordre i. Dobry 
et al. (1976) ont aussi proposé une généralisation de ces résultats pour des remplissages bicouches 
ou multicouches. Des cas similaires ont été étudiés par Hadjian (2002) en considérant une approche 
itérative pour estimer la période fondamentale de remplissages multicouches.

 › méthodes pour des remplissages 2D ou 3D
Pour caractériser la résonance de bassins rectangulaires, Bard and Bouchon (1985) ont proposé 
une relation simple donnant la fréquence fondamentale en fonction de la célérité des ondes et d’un 
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L’approche modale proposée par Paolucci (1999) utilise la méthode de Rayleigh et peut être 
employée pour tout type de remplissage sédimentaire 2D ou 3D. Elle consiste à minimiser le rap-
port entre énergie de déformation et énergie cinétique afin d’estimer la fréquence fondamentale ω0. 
Cette méthode est décrite en détail dans le paragraphe 2.2 et permet d’estimer les caractéristiques 
vibratoires de structures géologiques réelles.

 ■ Méthode modale simplifiée

La méthode modale considérée ici vise à estimer la fréquence « fondamentale » d’une structure 
géologique. Le processus de propagation d’ondes conduit généralement à une forte amplification 
du mouvement à des fréquences variées (Chávez-García et al., 2000 ; Semblat et al., 2005) mais, 
dans un but pratique, il est intéressant de déterminer une fréquence fondamentale unique par des 
approches simplifiées. L’approximation de Rayleigh permet par exemple une estimation rapide et 
fiable de la fréquence de résonance d’une structure géologique (Paolucci, 1999).

Cette méthode considère que le déplacement d’un système élastique dans un de ses modes pro-
pres peut être approché par celui d’un système à un degré de liberté. Nous étudions ici le premier 
mode propre caractérisé par la fréquence : ω0 = 2πf0. Si l’on note V l’énergie élastique du système 
et T son énergie cinétique, la conservation de l’énergie totale d’un système élastique implique que 
Vmax = Tmax. Le déplacement sk(x,t) correspondant aux vibrations harmoniques à la fréquence ω0 peut 
s’écrire :

 s x t x ek k
i to( , ) ( )= y w  (5)

où x représente la coordonnée d’espace, i le nombre imaginaire, t le temps et yk x( ) la forme 
modale suivant la direction k. On calcule alors l’énergie cinétique du système comme suit :
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L’énergie élastique V s’écrit alors :

 V t x x djl jl( ) ( ) ( )=
1
2

s e W
W
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où eij i j j is s= +, ,  est le tenseur de déformation et s le d meij ll ij ij= + 2  le tenseur de contrainte 
obtenu par la loi de Hooke avec δij le symbole de Kronecker, λ et µ les coefficients de Lamé. 
Comme pour Tmax, V atteint sa valeur maximale quand | | .e i to2 1w =  Il vient ainsi :
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L’équation (9) donne la valeur exacte de la fréquence fondamentale du système lorsque la forme 
modale réelle yk x( ) est connue. Cependant, comme la solution exacte n’est généralement pas 
accessible, la valeur de ω0 peut être estimée correctement en considérant une approximation réa-
liste de yk x( ). Cette approximation doit satisfaire à la fois les compatibilités géométriques et les 
conditions aux limites. Il a néanmoins été démontré (Paolucci, 1999) que la seconde condition peut 
ne pas être satisfaite complètement et que la forme modale peut être choisie dans une large gamme  
de fonctions satisfaisant uniquement les compatibilités géométriques.
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L’approche modale proposée par Paolucci (1999) utilise la méthode de Rayleigh et peut être 
employée pour tout type de remplissage sédimentaire 2D ou 3D. Elle consiste à minimiser le rap-
port entre énergie de déformation et énergie cinétique afin d’estimer la fréquence fondamentale ω0. 
Cette méthode est décrite en détail dans le paragraphe 2.2 et permet d’estimer les caractéristiques 
vibratoires de structures géologiques réelles.

 ■ Méthode modale simplifiée

La méthode modale considérée ici vise à estimer la fréquence « fondamentale » d’une structure 
géologique. Le processus de propagation d’ondes conduit généralement à une forte amplification 
du mouvement à des fréquences variées (Chávez-García et al., 2000 ; Semblat et al., 2005) mais, 
dans un but pratique, il est intéressant de déterminer une fréquence fondamentale unique par des 
approches simplifiées. L’approximation de Rayleigh permet par exemple une estimation rapide et 
fiable de la fréquence de résonance d’une structure géologique (Paolucci, 1999).

Cette méthode considère que le déplacement d’un système élastique dans un de ses modes pro-
pres peut être approché par celui d’un système à un degré de liberté. Nous étudions ici le premier 
mode propre caractérisé par la fréquence : ω0 = 2πf0. Si l’on note V l’énergie élastique du système 
et T son énergie cinétique, la conservation de l’énergie totale d’un système élastique implique que 
Vmax = Tmax. Le déplacement sk(x,t) correspondant aux vibrations harmoniques à la fréquence ω0 peut 
s’écrire :

 s x t x ek k
i to( , ) ( )= ψ ω  (5)

où x représente la coordonnée d’espace, i le nombre imaginaire, t le temps et ψk x( ) la forme 
modale suivant la direction k. On calcule alors l’énergie cinétique du système comme suit :
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L’énergie élastique V s’écrit alors :
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où εij i j j is s= +, ,  est le tenseur de déformation et σ λε δ µεij ll ij ij= + 2  le tenseur de contrainte 
obtenu par la loi de Hooke avec δij le symbole de Kronecker, λ et µ les coefficients de Lamé. 
Comme pour Tmax, V atteint sa valeur maximale quand | | .e i to2 1ω =  Il vient ainsi :
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L’équation (9) donne la valeur exacte de la fréquence fondamentale du système lorsque la forme 
modale réelle ψk x( ) est connue. Cependant, comme la solution exacte n’est généralement pas 
accessible, la valeur de ω0 peut être estimée correctement en considérant une approximation réa-
liste de ψk x( ). Cette approximation doit satisfaire à la fois les compatibilités géométriques et les 
conditions aux limites. Il a néanmoins été démontré (Paolucci, 1999) que la seconde condition peut 
ne pas être satisfaite complètement et que la forme modale peut être choisie dans une large gamme  
de fonctions satisfaisant uniquement les compatibilités géométriques.
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On peut alors déterminer la fréquence fondamentale à l’aide de la relation suivante :
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 ■ estimation de la fréquence fondamentale d’une structure géologique

En vue de l’analyse vibratoire simplifiée, nous considérons un bassin sédimentaire situé dans le 
centre de Nice. Ce site est bien connu puisque de nombreuses expérimentations ont été réalisées 
ainsi que plusieurs modélisations numériques (Semblat et al., 2000). Le bassin est supposé homo-
gène et sa résonance vibratoire est analysée pour une sollicitation sismique antiplane en cisaille-
ment caractérisée par la célérité VS = m r/ . Les caractéristiques mécaniques des deux milieux 
(bassin et substratum) sont les suivantes :

 – bassin : ρ1 = 2000 kg/m3, µ1 = 180 MPa, ν = 0,2 c’est-à-dire VS = 300 m/s ;
 – substratum : ρ1 = 2300 kg/m3, µ1 = 4500 MPa, ν = 0,2 d’où VS = 1400 m/s.
 – où ρ est la masse volumique, µ le module de cisaillement, ν le coefficient de Poisson et VS la 

célérité des ondes de cisaillement.

Comme le montre la figure 1, l’interface entre le bassin et le substratum est décrite à l’aide de deux 
fonctions cosinus :

 – partie ouest de la vallée :  f(x,z) = (h1+1) cos(2,7.10-3 x+1,55) (h1 = 64 m)
 – partie est de la vallée :  g(x,z) = (h2+2) cos(2,8.10-3 x -1,3) (h2 = 32 m)

Parmi les formes modales admissibles, on choisit les suivantes (Paolucci, 1999) :
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où f(x,z) est la fonction donnée précédemment. r ≥ 1 et t ≥ 1 sont des paramètres réels, s = 0,1,... est 
un paramètre entier et m et n représentent les ordres des modes suivant les directions verticale et 
horizontale (respectivement).
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On peut alors déterminer la fréquence fondamentale à l’aide de la relation suivante :
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L’approche modale proposée par Paolucci (1999) utilise la méthode de Rayleigh et peut être 
employée pour tout type de remplissage sédimentaire 2D ou 3D. Elle consiste à minimiser le rap-
port entre énergie de déformation et énergie cinétique afin d’estimer la fréquence fondamentale ω0. 
Cette méthode est décrite en détail dans le paragraphe 2.2 et permet d’estimer les caractéristiques 
vibratoires de structures géologiques réelles.

 ■ Méthode modale simplifiée

La méthode modale considérée ici vise à estimer la fréquence « fondamentale » d’une structure 
géologique. Le processus de propagation d’ondes conduit généralement à une forte amplification 
du mouvement à des fréquences variées (Chávez-García et al., 2000 ; Semblat et al., 2005) mais, 
dans un but pratique, il est intéressant de déterminer une fréquence fondamentale unique par des 
approches simplifiées. L’approximation de Rayleigh permet par exemple une estimation rapide et 
fiable de la fréquence de résonance d’une structure géologique (Paolucci, 1999).

Cette méthode considère que le déplacement d’un système élastique dans un de ses modes pro-
pres peut être approché par celui d’un système à un degré de liberté. Nous étudions ici le premier 
mode propre caractérisé par la fréquence : ω0 = 2πf0. Si l’on note V l’énergie élastique du système 
et T son énergie cinétique, la conservation de l’énergie totale d’un système élastique implique que 
Vmax = Tmax. Le déplacement sk(x,t) correspondant aux vibrations harmoniques à la fréquence ω0 peut 
s’écrire :

 s x t x ek k
i to( , ) ( )= y w  (5)

où x représente la coordonnée d’espace, i le nombre imaginaire, t le temps et yk x( ) la forme 
modale suivant la direction k. On calcule alors l’énergie cinétique du système comme suit :
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L’énergie élastique V s’écrit alors :
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où eij i j j is s= +, ,  est le tenseur de déformation et s le d meij ll ij ij= + 2  le tenseur de contrainte 
obtenu par la loi de Hooke avec δij le symbole de Kronecker, λ et µ les coefficients de Lamé. 
Comme pour Tmax, V atteint sa valeur maximale quand | | .e i to2 1w =  Il vient ainsi :
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L’équation (9) donne la valeur exacte de la fréquence fondamentale du système lorsque la forme 
modale réelle yk x( ) est connue. Cependant, comme la solution exacte n’est généralement pas 
accessible, la valeur de ω0 peut être estimée correctement en considérant une approximation réa-
liste de yk x( ). Cette approximation doit satisfaire à la fois les compatibilités géométriques et les 
conditions aux limites. Il a néanmoins été démontré (Paolucci, 1999) que la seconde condition peut 
ne pas être satisfaite complètement et que la forme modale peut être choisie dans une large gamme  
de fonctions satisfaisant uniquement les compatibilités géométriques.
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L’équation (9) donne la valeur exacte de la fréquence fondamentale du système lorsque la forme 
modale réelle ψk x( ) est connue. Cependant, comme la solution exacte n’est généralement pas 
accessible, la valeur de ω0 peut être estimée correctement en considérant une approximation réa-
liste de ψk x( ). Cette approximation doit satisfaire à la fois les compatibilités géométriques et les 
conditions aux limites. Il a néanmoins été démontré (Paolucci, 1999) que la seconde condition peut 
ne pas être satisfaite complètement et que la forme modale peut être choisie dans une large gamme  
de fonctions satisfaisant uniquement les compatibilités géométriques.
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Dans ce cas, l’inégalité conduisant à la fréquence fondamentale est la suivante :
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Les résultats sont obtenus pour le premier mode en considérant différentes valeurs du module de 
cisaillement : µ1 = 180 MPa (i.e. VS = 300 m/s), µ2 = 120 MPa (i.e. VS = 245 m/s) et µ3 = 90 MPa  
(i.e. VS = 212 m/s). Les résultats numériques obtenus par la méthode de Rayleigh sont comparés aux 
fréquences d’amplification maximale données par la méthode des éléments de frontière à travers 
une analyse explicite de la propagation des ondes (Semblat et al., 2000).

 ■ estimation modale de la fréquence fondamentale

D’après ces résultats, nous pouvons constater que les fréquences fondamentales obtenues par la méthode 
de Rayleigh sont en bon accord avec les fréquences de forte amplification déterminées par approche pro-
pagative. Les valeurs données dans le tableau i sont comparées pour la résonance de la partie profonde 
du bassin (ouest) et la partie peu profonde (est) et ce pour différentes valeurs du module de cisaillement. 
Pour un modèle de bassin homogène, la méthode de Rayleigh semble donc donner des résultats très 
intéressants, qui sont non seulement en accord avec les valeurs obtenues à l’aide d’autres modèles mais 
également avec les résultats expérimentaux présentés en détail par Semblat et al., (2000).

 ■ Comparaison entre méthode modale simplifiée et courbes d’amplification

Les fréquences fondamentales estimées par la méthode modale simplifiée sont comparées avec 
les courbes d’amplification données par les mesures et les simulations propagatives par équations 
intégrales de frontière (Semblat et al., 2000). Sur la figure 2, les lignes verticales représentent la 
fréquence fondamentale pour les parties Ouest et Est du bassin et sont estimées pour différents 
modules de cisaillement (µ1 ; µ2 ; µ3). Pour la partie Ouest du bassin, la fréquence fondamentale f3 
estimée pour µ3 (trait continu) est en très bon accord avec les pics d’amplification expérimentaux 
(en haut) et numériques (en bas). Pour la partie Est du bassin, c’est pour le module de cisaillement 
µ1 (trait pointillé-tireté) que l’accord avec le deuxième pic d’amplification est très satisfaisant. Cela 
donne une idée de l’influence du module de cisaillement (ou de la célérité) du bassin sur le proces-
sus de résonance. L’influence sur le processus d’amplification proprement dit est montrée par les 
résultats numériques de l’approche propagative par équations intégrales de frontière (figure 2).

ANAlyse pRopAgAtive des effets de site

 ■ méthodes numériques en propagation d’ondes

Pour simuler numériquement la propagation et l’amplification des ondes sismiques, plusieurs 
méthodes numériques sont envisageables (Semblat, 2011) :

 – méthode des différences finies, très précise en élastodynamique mais généralement limitée à des 
géométries simples et des comportements linéaires (Moczo et Bard, 1993 ; Virieux, 1986) ;

tableau 1
Comparaisons entre  

les fréquences  
de référence obtenues par 

la méthode propagative 
et les fréquences 

fondamentales issues 
de l’approche modale 

simplifiée.

Partie ouest Partie est

Fréquence de 
référence eiF

Fréquence 
fondamentale

Fréquence de 
référence eiF

Fréquence 
fondamentale

µ1 1,35 Hz 1,50 Hz 2,42 Hz 2,86 Hz

µ2 1,30 Hz 1,23 Hz 2,13 Hz 2,34 Hz

µ3 1,13 Hz 1,07 Hz 1,75 Hz 2,02 Hz
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(en haut) et numériques (en bas). Pour la partie Est du bassin, c’est pour le module de cisaillement 
µ1 (trait pointillé-tireté) que l’accord avec le deuxième pic d’amplification est très satisfaisant. Cela 
donne une idée de l’influence du module de cisaillement (ou de la célérité) du bassin sur le proces-
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analyse propagative des effets de site

 ■ méthodes numériques en propagation d’ondes

Pour simuler numériquement la propagation et l’amplification des ondes sismiques, plusieurs 
méthodes numériques sont envisageables (Semblat, 2011) :

 – méthode des différences finies, très précise en élastodynamique mais généralement limitée à des 
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tableau 1
Comparaisons entre  

les fréquences  
de référence obtenues par 

la méthode propagative 
et les fréquences 

fondamentales issues 
de l’approche modale 

simplifiée.

Partie ouest Partie est

Fréquence de 
référence eiF

Fréquence 
fondamentale

Fréquence de 
référence eiF

Fréquence 
fondamentale

µ1 1,35 Hz 1,50 Hz 2,42 Hz 2,86 Hz

µ2 1,30 Hz 1,23 Hz 2,13 Hz 2,34 Hz

µ3 1,13 Hz 1,07 Hz 1,75 Hz 2,02 Hz
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(et les conditions d’écoulement libre aux limites) permet d’absorber sans effet le différentiel de 
dilatation important entre liquide et solide ; à basse température, lorsque la transition liquide/glace 
s’est opérée, la relativement faible quantité de glace présente au sein de la matrice solide masque le 
différentiel de dilatation entre la glace et la phase minérale de l’enrobé.

Autrement dit, le comportement observé sur l’éprouvette EB-33 peut se traduire schématiquement 
par les équations :

 e a q qT
i= -( ) si q > 0 (3)

 e a q q eT
i gonflement rS= - +( ) ( ) si e a q qT

i= -( ),  (4)

en supposant pour simplifier que le gonflement egonflement s’opère brutalement à température nulle 
et que les coefficients de dilatation de l’enrobé aux températures strictement positives et négatives 
sont égaux. La déformation egonflement est fonction du degré de saturation de l’enrobé ; elle est nulle 
pour Sr = 0 et croît avec le taux de saturation. 

L’évolution plus progressive des déformations réellement mesurées sur l’échantillon EB-33 traduit 
sans doute un gonflement plus progressif que celui supposé ici, mais résulte sans doute aussi en 
partie de la longueur finie et relativement importante des jauges disposées perpendiculairement à la 
direction de propagation du front de gel – Voir encart) 

moDéLisAtion Du signAL Des jAuges DAns Le CADRe Des équAtions [3], [4] 

Notons l la longueur des jauges et z tf ( ) la position du front de gel, supposé d’extension verticale nulle et coïncider avec 
la condition q( , )z t = 0. D’après les équations [3] et [4], en considérant les instants pour lesquels le front de gel est situé 
entre le bas et le haut de la jauge :
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En termes de vitesse de déformation, on en déduit : 
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avec q = température moyenne sur la longueur de la jauge,

v f  = vitesse du front de gel (comptée positivement vers le bas).

Lorsque le front de gel est au-dessus ou au-dessous de la jauge : 
d t
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Ainsi, pendant le temps où la jauge est traversée par le front de gel, la déformation résulte du terme a qd
dt

, négatif en phase 

de refroidissement, et du terme egonflement r
fS
v
l

( ) , positif lorsque le front descend. 

Ce dernier terme peut donc inverser momentanément le sens de variation de la mesure, si le taux de saturation du matériau 
et la déformation de gonflement associée sont suffisamment élevés (cas de l’éprouvette EB-33). 

L’évolution montrée par l’éprouvette EB-34 correspondrait au cas intermédiaire d’un taux de saturation et d’une déforma-
tion de gonflement associée insuffisants pour inverser le taux d’évolution de la déformation mesurée, mais suffisant pour 
en ralentir significativement l’évolution. 

Des simulations plus précises, en utilisant par exemple le logiciel GEL1D d’ALIZE ou le module GEL de CESAR-LCPC, 
permettraient d’affiner la comparaison mesures/modèle et de mieux quantifier les valeurs des paramètres en jeu. 
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(et les conditions d’écoulement libre aux limites) permet d’absorber sans effet le différentiel de 
dilatation important entre liquide et solide ; à basse température, lorsque la transition liquide/glace 
s’est opérée, la relativement faible quantité de glace présente au sein de la matrice solide masque le 
différentiel de dilatation entre la glace et la phase minérale de l’enrobé.

Autrement dit, le comportement observé sur l’éprouvette EB-33 peut se traduire schématiquement 
par les équations :

 ε α θ θT
i= −( ) si θ > 0 (3)

 ε α θ θ εT
i gonflement rS= − +( ) ( ) si ε α θ θT

i= −( ),  (4)

en supposant pour simplifier que le gonflement εgonflement s’opère brutalement à température nulle 
et que les coefficients de dilatation de l’enrobé aux températures strictement positives et négatives 
sont égaux. La déformation εgonflement est fonction du degré de saturation de l’enrobé ; elle est nulle 
pour Sr = 0 et croît avec le taux de saturation. 

L’évolution plus progressive des déformations réellement mesurées sur l’échantillon EB-33 traduit 
sans doute un gonflement plus progressif que celui supposé ici, mais résulte sans doute aussi en 
partie de la longueur finie et relativement importante des jauges disposées perpendiculairement à la 
direction de propagation du front de gel – Voir encart) 

moDéLisAtion Du signAL Des jAuges DAns Le cADRe Des équAtions [3], [4] 

Notons l la longueur des jauges et z tf ( ) la position du front de gel, supposé d’extension verticale nulle et coïncider avec 
la condition θ( , )z t = 0. D’après les équations [3] et [4], en considérant les instants pour lesquels le front de gel est situé 
entre le bas et le haut de la jauge :
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En termes de vitesse de déformation, on en déduit : 
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avec θ = température moyenne sur la longueur de la jauge,

v f  = vitesse du front de gel (comptée positivement vers le bas).

Lorsque le front de gel est au-dessus ou au-dessous de la jauge : 
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dt
d
dt

T
jaugeε

α
θ( )

= .

Ainsi, pendant le temps où la jauge est traversée par le front de gel, la déformation résulte du terme α θd
dt

, négatif en phase 

de refroidissement, et du terme εgonflement r
fS
v
l

( ) , positif lorsque le front descend. 

Ce dernier terme peut donc inverser momentanément le sens de variation de la mesure, si le taux de saturation du matériau 
et la déformation de gonflement associée sont suffisamment élevés (cas de l’éprouvette EB-33). 

L’évolution montrée par l’éprouvette EB-34 correspondrait au cas intermédiaire d’un taux de saturation et d’une déforma-
tion de gonflement associée insuffisants pour inverser le taux d’évolution de la déformation mesurée, mais suffisant pour 
en ralentir significativement l’évolution. 

Des simulations plus précises, en utilisant par exemple le logiciel GEL1D d’ALIZE ou le module GEL de CESAR-LCPC, 
permettraient d’affiner la comparaison mesures/modèle et de mieux quantifier les valeurs des paramètres en jeu. 




