MODELISATION ACOUSTIQUE

Modélisation numérique du fonctionnement
des ecrans antibruit routiers
dans leur environnement

RESUME

La protection des riverains contre le bruit
routier est une préoccupation d’environne-
ment trés actuelle. Cet article présente les
bases d’'un modeéle de prévision du fonction-
nement de dispositifs de protection de type
écran antibruit. Les paramétres du probléme
étant multiples, le modéle retenu est un
modéle numérique bidimensionnel par équa-
tions intégrales et éléments de frontiére
(BEM). La méthode a été implémentée dans
le code CESAR-LCPC, profitant ainsi des pos-
sibilités des pré- et post-processeurs. Des
comparaisons avec des résultats expérimen-
taux ou issus de la littérature internationale
ont permis de valider la méthode ainsi déve-
loppée, sur des configurations simples. Le
modeéle numérique offre 'avantage de per-
mettre I'étude de configurations beaucoup
plus complexes et réalistes que les modéles
analytiques, notamment en ce qui concerne
la forme architecturée des écrans antibruit, la
répartition des absorbants sur leur surface et
interaction avec [I'environnement proche,
s'agissant d’'un terrain plat ou accidenté,
engazonné, bitumineux fermé ou poreux...

MOTS CLES : 710 - Ecran antibruit -
Modéle numérique - Prévision - Protection -
Environnement - Forme - Conception -/Equa-
tion intégrale - Elément frontiére - CESAR.

Introduction

Le bruit généré par les infrastructures routiéres est une
préoccupation grandissante des pouvoirs publics, et la
recherche de solutions techniques permettant de pré-
server I’environnement sonore ou d’améliorer le confort
des riverains est largement encouragée. Parmi ces tech-
niques de lutte contre le bruit routier, les plus promet-
teuses actuellement sont I'action sur la nature du revé-
tement routier, afin de réduire 1'émission sonore du
roulement des véhicules, et I’'interposition d’obstacles
entre la route et les batiments avoisinants, dont les plus
courants sont les écrans antibruit et les buttes de terre.
La compréhension fine de leur fonctionnement est capi-
tale, d’une part, pour optimiser leur dimensionnement
et, d’autre part, pour connaitre D’influence de leur
forme, de la répartition des absorbants, de leur emploi
combiné avec d’autres moyens de protection sonore tels
que les chaussées absorbantes par exemple. L’efficacité
acoustique de ces dispositifs de protection a été long-
temps abordée de maniére empirique, mais est actuelle-
ment largement €étudiée a 1’aide de méthodes géométri-
ques (construction de rayons sonores) par analogie avec
les lois de 1’optique géométrique. En tout état de cause,
ces méthodes reposent sur des hypothéses de configura-
tions relativement simples et restreintes: dans la
majeure partie des cas, I’écran est supposé droit, mince,
vertical et homogene, il doit reposer sur un sol parfaite-
ment plan et réfléchissant. Or, bien souvent, les confi-
gurations environnantes sont trés complexes et, par
souci d’esthétique, les écrans implantés dans la pratique
présentent des formes architecturées et sont constitués
de matériaux variés, sans qu’il soit possible d’en pré-
voir I’incidence sur le comportement acoustique.
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Notre travail a porté sur la modélisation des phé-
nomenes de diffraction du son par les obstacles
dans un contexte trés général, englobant notam-
ment les particularités de forme, de matériaux,
d’hétérogénéités de matériaux et d’interaction
avec I’environnement immédiat. Seules les
méthodes numériques sont susceptibles d’inté-
grer tous ces parametres. Dans un environnement
non limité spatialement, les méthodes d’éléments
finis sont trop coliteuses et conduiraient a des
systémes trop gros pour les capacités actuelles
de machine. En revanche, les méthodes d’équa-
tions intégrales (BEM), pour lesquelles la résolu-
tion s’effectue uniquement sur les surfaces limi-
tes, sont beaucoup plus efficaces.

L’objet de cet article est de présenter les bases
de 1a méthode BEM utilisée pour résoudre un tel
probléme d’acoustique environnementale, et de
présenter quelques exemples de résultats et de
validations. Le code de calcul que nous avons
choisi comme support de la méthode est
CESAR-LCPC, en raison des commodités offertes
par les pré- et post-processeurs MAX et PEGGY, et
en raison des bases communes existant entre les
résolutions numériques d’éléments finis et
d’« équations intégrales ». Cette étude s’inscrit
dans le cadre d’une thése de ['université de
Strasbourg. (Université Louis Pasteur et 1uT de
Génie civil) réalisée en partie au LRpC de
Strasbourg et au LcPc.

Définition du probleme

Equation des ondes acoustiques
en champ libre

Le son est une perturbation de la pression atmos-
phérique qui se propage dans 1’air. Cette propa-
gation s’étudie en observant le mouvement d’un
élément de volume de milieu continu déforma-
ble. Les lois de conservation de la masse et de la
quantité de mouvement, d’une part, les lois de
comportement du milieu, d’autre part, permet-
tent d’établir 1’équation des ondes acoustiques
dans un milieu continu. Cette équation est cou-
ramment établie pour des ondes sonores se pro-
pageant dans 1’air sous les hypotheses suivantes :

— le milieu est un fluide parfait (pas de cisaille-
ment, absence de viscosité),

— le milieu est homogene et isotrope,

— les variations de pression sont petites par rap-
port aux valeurs d’équilibre : c’est 1’hypothése
de I’acoustique dite « linéaire ».

L’équation qui régit la pression acoustique au
point M a l’instant t peut alors s’écrire :
1 'pM, t) _ S

ApM,t) — —
p(M,1) 2 o

(D

ol S est un terme représentant la source sonore,

d
c = £ est la célérité des ondes.

Lorsque, de plus, on suppose une dépendance
temporelle de type harmonique: p(M, t) =
Re[p(M) exp(-iwt)] ol @ est la pulsation de
Ionde et i= \/——1, on obtient I’équation des
ondes, ou équation de Helmholtz :

Ap(M) + k¢ p(M) = S )

_ 0]
k, est le nombre d’onde défini par: k,= —.
c
Pour T’air supposé satisfaire les hypotheses
ci-dessus, dans les conditions normales de pres-
sion atmosphérique, ¢ = 340 m/s a 20 °C.

La connaissance de la pression acoustique, gran-
deur scalaire exprimée par une amplitude et une
phase, ne suffit pas, a elle seule, a décrire com-
pletement 1’état acoustique au point M dans le
milieu. La vitesse des particules d’air v est la
deuxieme inconnue du probleme. C’est une gran-
deur vectorielle qui est liée a la pression acous-
tique par la relation :

oV (M, t)
ot

ou p, est la masse volumique de I’air.

grad p (M, t) + p, =0 (3

Les sources de bruit

Naturellement, il n’existe pas de propagation
d’onde sonore sans source émettrice. La modéli-
sation d’une source de bruit s’effectue a partir de
sources €lémentaires, générant chacune des
ondes de forme particuliere. Si on exclut les
sources générant des ondes « planes », que 1’on
ne rencontre pas en acoustique extérieure (c’est
le type d’onde se propageant a I’intérieur d’ un
conduit, par exemple), deux grands types de
sources existent : les sources ponctuelles et les
sources linéiques.

Les sources ponctuelles

Le modele consiste en une petite sphere pulsante
qui répartirait son énergie sonore de fagon iso-
trope dans I’espace. Les ondes générées sont
dites sphériques. Ce sont les ondes sonores les
plus courantes. Une onde sphérique satisfaisant
I’équation de propagation (2) donne une pression
acoustique en champ libre en un point M situé a
une distance r de la source ponctuelle sous la
forme (A est un terme d’amplitude sur lequel on
reviendra ultérieurement) :

exp(ikor)

M:
p(M) = A 47r

€]
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Les sources linéiques

Elles se modélisent par une ligne source (ou un
cylindre) infiniment longue, pulsant uniformé-
ment et répartissant son énergie sonore de facon
équiprobable dans le plan perpendiculaire a son
axe, c’est-a-dire sur des cylindres. Les ondes
générées sont alors dites cylindriques. Dans la
réalité, un train et méme un trafic routier géne-
rent des ondes proches des ondes cylindriques.
Dans la présente étude, c’est donc cette représen-
tation de ligne source que nous avons retenue
pour modéliser le trafic routier en tant que
source sonore. La solution propagative générée
par une source linéique en champ libre s’écrit :

pM) = A % H, P (ko 1) %)

olt H,"” est la fonction de Hankel de 1™ espece
et d’ordre 0, encore appelée fonction de Bessel
de 3™ espece.

On vient de voir que la géométrie de la source
sonore pouvait conditionner le type d’ondes émi-
ses, leur forme, leur facon de se propager. Mais
une source sonore est également caractérisée par la
puissance de son émission. On définit la puissance
acoustique moyenne émise par la source par :

T
P= T J J Re [p exp (—iom t] Re[ vexp (—im t]
0 Vs

TdSdi= L Re||pV*ndS (6)
2 S

Dans cette expression S est une surface fermée
quelconque entourant la source et n est la nor-
male extérieure a cette surface. De plus, T est la
période et Re désigne la partie réelle.

On peut alors montrer que, pour une source
ponctuelle, le terme d’amplitude de la pression A
exprimé ci-dessus est reli€é a la puissance acous-
tique de la source par :

A =81 pyc, P )

Pour une ligne source, le terme d’amplitude A est
relié a la puissance acoustique par unité de lon-
gueur P par une relation dépendant de la fré-

quence :
A =4 \rp,fP (®)

Conditions aux limites
et conditions de radiation

Condition a linfini : condition de Sommerfeld

Cette condition exprime qu’a ’infini, la pression
acoustique s’annule et que I’onde sonore est uni-
quement divergente. Cette condition s’écrit :

lim H@ ik, p(r)ﬂ 0 ©

r—>o0
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avec e =1en 3-D, € = 1/2 en 2-D

Condition de réflexion parfaite

Les conditions aux limites les plus simples
imposent soit la pression acoustique, soit la
vitesse normale de I’air aux parois. Il est cepen-
dant rare, en acoustique, qu’une condition aux
limites impose la valeur de I'une ou l’autre de
ces grandeurs. Le seul cas « sympathique » cor-
respond a une réflexion parfaite du son sur la
surface considérée, c’est-a-dire que 1’énergie
sonore de I’onde rencontrant la surface est entie-
rement réfléchie. Alors, la composante normale &
la surface de la vitesse des particules d’air
excitée s’annule, d’ou la condition aux limites :

v, =0 10y

Notons que, d’apres I’équation (3), la vitesse
normale v, et le gradient de pression acoustique
selon la normale sont liés par (pour une onde
harmonique) :

op .

30 ! KoPocovy, = 0
La condition de réflexion parfaite peut donc éga-
lement s’exprimer par :

9P _
on

(1D

0 (12)

Condition générale de réflexion partielle
sur une surface quelconque

Dans le cas plus général, lorsqu’un son se pro-
page au-dessus d’une surface, seule une partie de
son énergie est réfléchie, le reste étant absorbé par
la surface. Le pouvoir d’absorption de la surface
limite est traduit par I’impédance acoustique nor-
male de surface, définie en un point de la surface
comme le rapport de la pression sur la vitesse
particulaire selon la norme a cette surface :

Z, = — (13)

Ainsi, la condition aux limites ne donne pas direc-
tement la pression ou la vitesse particulaire, mais
le rapport entre les deux. Pour la plupart des sur-
faces absorbantes (surface engazonnée, tapis,
mousse naturelle ou synthétique, absorbants
placés sur écrans acoustiques routiers...), cette
impédance est supposée constante sur la surface,
indépendante de la position de la source sonore
excitatrice, (hypothese dite de réaction localisée).
Cette impédance peut se mesurer sur des échantil-
lons de matériaux au moyen d’un tube a ondes
stationnaires ou in sifu par technique sonore
impulsionnelle. Des modeles existent permettant
d’estimer cette impédance de surface en fonction
des caractéristiques physiques du matériau. Le
plus largement utilisé est le modele empirique de
Delany et Bazley (1970) qui, sous I’hypothese de
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réaction localisée, s’écrit :
Z./pgCy = [1 + 0,0571 C_0‘754:| + i [0,087 C—0,732:|

fpo

= (14)

avec C =

Ry est la résistance au passage de 1’air, qui s’ex-
prime en Rayls/m (1 Rayl = 1 Nm™s). La résis-
tance au passage de 1’air est égale a ’inverse de
la perméabilité a I’air. Elle s’obtient expérimen-
talement par les techniques traditionnelles de
mesure de perméabilité.

En combinant les équations (11) et (13), on
exprime souvent la condition de surface par une
relation ne faisant intervenir que la pression et
son gradient :

dp .
3, Ko Bup=0 (15)
. PoCo . .
ou B, = 7 est encore appelée I’admittance

n
normale de surface.

Le traitement de l'interface air/milieu poreux

Pour certaines surfaces limites, comme les sur-
faces a forte porosité de type enrobés drainants,
I’hypothese selonlaquelle I’impédance normale de
surface est constante n’est plus valide.
L’impédance de surface dépend de la position de la
source sonore et le matériau poreux intervient dans
toute son épaisseur sur ’atténuation sonore et non
plus seulement localement en surface. En consé-
quence, un traitement particulier de I’interface
entre I’air et un milieu poreux est nécessaire afin de
définir une condition aux limites acceptable.

La prise en compte de la couche poreuse et de
son interaction avec l’air nécessite d’exprimer
les phénomenes propagatifs a Iintérieur du
milieu poreux. Nous utiliserons, pour décrire ce
milieu, le modele phénoménologique développé
par Hamet (1992), qui assimile le milieu poreux
a un fluide compressible dissipatif dans lequel
sont introduits des phénomenes de dissipation
d’énergie sonore par thermoconductivité. La pro-
pagation du son se traduit par les mémes €qua-
tions (2) et (3) que dans 1’air, mais la constante
de propagation k, et la masse volumique p, de

I’air sont remplacées respectivement par la
constante de propagation dans le milieu k, et la

densité¢ équivalente p, du milieu poreux. Ces

deux grandeurs sont complexes afin de traduire
la dissipation d’énergie ; elles s’expriment par :

f 1/2 1 — 1/,Y 12
R (PR (RET o

et

(17)

K .fu
pp=p051+1—f—

ou f, et fg sont des fréquences définies par :

R

s S

t f,=
© Ho 2mpK

f, = 18
0 2TchPr ( )

Q, R, K sont respectivement la porosité, la résis-

tance au passage de 1’air et le facteur de forme
du milieu poreux (K traduit la forme plus ou
moins tortueuse des pores),

Y= 1,4 : le rapport des chaleurs spécifiques,
P_: nombre de Prandtl.

r

L’indice « 0 » se réfere a I’air, et « p » au milieu
poreux.

Le traitement de I’interface entre air et milieu
poreux se fait par application des relations de
continuité :

— de la pression @ Py = Pporeux (19)
— de la composante normale de la vitesse parti-

culaire : Vatainy = Vi(poreux)

Résolution numérique
par équations intégrales

Formulation intégrale

Considérons un écran acoustique bidimensionnel
(longueur infinie) de forme quelconque reposant
a la surface du sol et une source de bruit linéi-
que, de puissance P(®) localisée en x_ (fig. 1).

Source .>>>

Sol

Fig. 1 - Configuration d’'une section du probléme.

Le probleme de la diffraction, par ’écran, de
I’onde acoustique émise par la source revient a
trouver le champ de pression p(x) satisfaisant
I’équation des ondes (2) et les conditions aux
limites a la surface S du sol et de I’écran. Si
P(x,y) désigne la fonction de Green de 1’équation
de Helmholtz ce champ de pression vérifie, indé-
pendamment des conditions aux limites, 1’équa-
tion intégrale :

0(y) p(y) +
dP(x,y) op(x, y)
L(—an— p(x) — P(x, y) T) da(x)
= p™(y) (20
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Dans I’équation précédente p'™(y) est I’onde de
pression incidente émise par la source. C’est, a
un coefficient multiplicatif pres, dépendant de ia

puissance P (8), la fonction de Green P(x, y)

p(y) = A(P) P(y, X)) 1)
La fonction O(y) est donnée par :
1/2 st y € S en tout point régulier
O(y) =41 siye Q (22)
0 siyeQ

Q est le domaine de ’espace dans lequel se pro-
gagent les ondes c’est-a-dire typiquement le
milieu aérien au-dessus du sol.

6(y) ne prend la valeur 1/2 qu’en tout point régu-
lier de S.

Aux points irréguliers de S, 6(y) dépend en fait
de I’angle solide formé par S.

L’équation (20) montre qu’en tout point intérieur
a Q, le champ de pression est explicitement
déterminé par les pressions et leurs dérivées nor-
males sur la surface S. Le probléme revient alors
a résoudre 1’équation intégrale (20) pour y € S.

Discrétisation

La résolution numérique de cette équation inté-
grale s’appuie sur une approximation des pres-
sions et de leurs dérivées normales a 1’aide d’élé-
ments finis de surface. Sur un élément particulier
e les pressions et leurs dérivées normales sont
approchées au moyen de fonctions d’interpola-
tion Ni(x) et M{(x) (i = numéro de nceud) :

d :
PO = X NGOP; et 520 = 2 Mi(q! (23)

Le champ de pression étant continu sur S, il est
représenté par les valeurs nodales p,. A I’inverse,
le champ dp/dn n’est pas nécessairement continu
sur S. Dans la description précédente, il est
continu par élément et représenté par les valeurs
nodales de chaque élément qui sont notées q;.
Bien que les fonctions Nf(x) et M{(x) puissent
étre du point de vue théorique différentes, pour
des raisons pratiques de mise en ceuvre elles sont
généralement égales. La substitution des expres-

sions (23) dans (20) conduit alors au calcul des
fonctions :

oP(x,
Qo = [ FEY N o @24)
Se

Piy) = JP(X, y) Mi(x) da(x) (25)

S

e

Lorsque y est localisé sur I’élément de surface S,

les deux intégrales sont alors singulieres. La sin-
gularité de la fonction de Green P(x,y) et la défi-
nition méme de la fonction 6(y) montrent que
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I’intégrale (25) garde le sens d’une intégrale de
Riemann alors que (24) doit étre prise au sens des
valeurs principales de Cauchy. Le calcul numé-
rique de (24) et (25) nécessite alors de trans-
former les intégrales par une procédure dite de
régularisation qui permet ensuite d’appliquer les
techniques classiques d’intégration numérique
par points de Gauss. Différentes procédures de
régularisation existent dans la littérature [Dangla
(1989), Bonnet (1986), Rizzo et al. (1985)]. Celle
que nous avons choisie ici et que nous ne repre-
nons pas, est celle décrite dans Dangla (1989).

Choisissons pour y les coordonnées d’un nceud
particulier j (point dit de collocation).
L’équation intégrale (20) se met alors sous la
forme discrétisée :

op, + X(Qip; — Piq7) = p* (26)

1,€

ou les coefficients Q5 et P} correspondent aux
expressions données par (24) et (25) pour le
choix particulier de y. Lorsque 1’on considere
tous les nceuds du maillage, les équations (26)
prennent la forme matricielle,

[Q] {p} — [PI{q} = {P™}

Les composantes du vecteur {q} sont les qf

lorsque i et e parcourent tous les nceuds et tous
les éléments de surface alors que celles du vec-
teur {p} sont les seuls p;. Les composantes des

matrices [Q] et [P] sont aisément identifiées aux
expressions :

Q; = 6,9; + 2Q;
€
Py = Pj

27

(28)

ou k est le numéro attribué au nceud i de 1’élé-
ment e.

Prise en compte des conditions aux limites

Le systeme (27) n’est que la forme discrétisée de
I’équation (20) qui ne prend pas en compte les
conditions aux limites. La résolution du pro-
bléme nécessite de spécifier ces conditions sur S.
Ces conditions aux limites peuvent s’exprimer
par la donnée en chaque nceud j soit des qj" pour
tous les éléments e en contact avec j soit de la
pression p; et des q; pour tous les €léments e,
sauf un, en contact avec j. Ces conditions aux
limites ainsi exprimées garantissent la définition
d’un probléme bien posé, c¢’est-a-dire 1’obtention
d’autant d’équations que d’inconnues.

Prenons I'exemple d’une surface S purement
réfléchissante. Les conditions aux limites s’ex-
primant par (12), le vecteur des pressions
nodales {p} est alors solution du systéme
linéaire :

[QI {p} = {p™} (29)



Le champ de pression en tout point de € est
alors donné par l’expression :

inc OP(x,
P(Y) = P™ () - f S o) dax) - (30)
S

ol p(x) = 2 Ni(x)p,

La surface n’étant, dans le cas général, jamais
parfaitement réfléchissante, 1’absorption du son
par la surface conduit a introduire la condition a
la limite définie par (15). La pression p(y) est
alors solution de I'équation intégrale :

O(y)p(y) +

j(% — ikoB,(y) P(x,y)J p(x) da(x)
S

= p"™(y) 3D
Dans le cas ol la fonction admittance B (y) est

constante par élément, on peut facilement se
ramener a la procédure précédente pour prendre

en compte cette condition a la limite.
Introduisons le changement de variable

q° = g7 — ikoBp, (32)
et notons de méme :

Q;f = Q5 — ikoBiP; (33)

L’équation discrétisée (26), écrite en terme de
I"inconnue q;°, prend alors la forme :
op; + ze,(ijpi - P;Qie) = p™ (34)

1,
Ainsi, pour le probleme défini par la condition a
la limite (15) le vecteur des pressions nodales {p

est solution d’un systeme linéaire analogue
(29) :

.
a

[Q'1{p} = {p"™} (35)
avec
Q;i = 68 + 2Qf (36)
€
Le champ de pression en tout point de £ est
cette fois donné par :

ply) = p™(y) —

IP(x, y)

J(T — ik, (y) P(x,y)) p(x) da(x)  (37)
s

Interface air/milieu poreux

L’introduction de surfaces « poreuses » nécessite
de formuler deux problémes couplés, I’un dans
I’air, I"autre dans le milieu poreux. On obtient
alors a ’interface :

— une équation intégrale dans I’air aboutissant a
un systéeme linéaire (27),

— une autre équation dans le milieu poreux (du
méme type que dans I’air).

Les deux équations intégrales sont ensuite cou-
plées par ’expression de la continuité de la pres-
sion et de son gradient a I’interface (19), pour
finalement donner le systeme couplé :

{[Q]{p} — [Pl{a} = {p"™}
[Q'1{p} — [P’I{q} = {0}

Développements numériques
et validation

Implémentation dans CESAR-LCPC

Le logiciel CESAR-LcPC est composé de trois
programmes indépendants : les pré- et post-pro-
cesseurs graphiques nommés MAX et PEGGY et le
code de calcul par éléments finis proprement dit
CESAR. Ces trois programmes de base communi-
quent entre eux grice a une base de données for-
mées de fichiers binaires dans lesquels sont
stockés les données et résultats de la modélisa-
tion du probleme considéré.

CESAR PEGGY

MAX

Base de donnees

Le programme CESAR est un programme modu-
laire, c’est-a-dire fonctionnant par 1’appel de
mots-clés de quatre lettres correspondant a un
module soit de lecture et de gestion de données,
soit d’exécution d’un type particulier de probleme
avec un type particulier de méthode ou d’algo-
rithme. La méthode des équations intégrales a été
implémentée au sein du code d'éléments finis
CESAR, afin de profiter de I’environnement des
pré- et post-processeurs graphiques permettant
d’effectuer le maillage, la préparation des données
du probléme ainsi que la visualisation des résul-
tats. Un certain nombre de modules spécifiques a
la méthode des équations intégrales ont donc été
introduits au sein du code cesar. Cependant, cer-
tains modules de lecture et de gestion de données
déja existants servent a la construction d’un jeu de
données. La liste des mots-clés suivants permet de
visualiser I’enchainement des modules pour la
résolution d’un probleme par équations intégrales.

Mols-clés déja existants

cooRr : Lecture des coordonnées des nceuds de
surface,
ELEM : Lecture de la numérotation des élé-

ments de surface,

coND : Lecture des conditions aux limites por-
tant sur les inconnues principales du probleme
c’est-a-dire les p,.
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Motis-clés introduits dans CESAR

EQUA : Aiguillage vers la méthode des équa-
tions intégrales,

cHAF : Lecture des conditions aux limites por-
tant sur les inconnues secondaires du probléme

c’est-a-dire les gf (ou q°),

NOYA : Lecture de la numérotation des
noyaux. Un noyau est la fonction (de Green)
définie par :

gx) = > AjP(x x)

je{jl.in}
ou x; est le vecteur des coordonnées du neeud j.
L’ensemble des n noeuds {jl,..jn} est la numérota-
tion du noyau. Les n scalaires A; définissent I’am-

plitude du noyau (généralement n=1et A, =1).

DYNF : Module d’exécution correspondant a la
résolution du systeme (27) ou (35). Le calcul est
effectué en nombres complexes et pour une liste
de fréquences donnée.

En pratique, les données géométriques de
contour et de maillage sont saisies a l’aide de
MaXx. Puis, pour chaque groupe d’éléments, les
parametres acoustiques sont introduits dans la
base de données :

> Parametres du milieu de propagation :

— la célérité des ondes dans le milieu (c),
— la densité du milieu (p) ;

> Paramétres de source :

— coordonnées de la source,
— puissance sonore émise (terme A du §
Formulation intégrale) ;

> Parameétres de conditions aux limites :

— épaisseur utile du matériau absorbant,

— résistance au passage de 1’air (R),

— la porosité (€2), le facteur de forme (K)
dans le cas d’interface avec un milieu poreux.

Validation des modules acoustiques

La littérature spécialisée est riche en résultats de
prévisions d’atténuation par les écrans. La plu-
part des cas sont traités par des méthodes analy-
tiques (méthodes de rayons par analogies avec
I’optique géométrique). Une premiére étape de
notre travail a donc été de valider le modéle BEM
développé sur CESAR-LCPC par rapport a de tels
résultats analytiques. Sur les nombreux cas trai-
tés, un excellent accord a été trouvé. Un exemple
de I'efficacité d’un écran droit, mince et réflé-
chissant de 4 m de hauteur, reposant sur un sol
plan réfléchissant est présenté sur la figure 2. La
source sonore est placée au sol, 19 m devant
I’écran. La courbe représente la perte par inser-
tion de I’écran notée PI sur la figure (c’est la dif-
férence de niveau sonore avec et sans 1’écran)
calculée en fonction de la distance derriere
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Distance derriere I'écran (m)
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CESAR - LCPC
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..... Seznec
25 L

Perte par insertion (dB)

Fig. 2 - Perte par insertion d’un écran mince réfléchissant
a 500 Hz. Comparaison entre CESAR (——), Kurze (»),
Daumas (m) et Seznec (- - - -).

Atténuation (dB)
35 -

80 - e CESAR - LCPC
251 = Hothersall
20
151
10L
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0 . . . . .
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L

Fig. 3 - Atténuation d’un écran en T en fonction de la fré-
quence. Comparaison entre CESAR (——), et Hothersall
et al. m).

I’écran pour une fréquence de 500 Hz. On note
une bonne corrélation entre le résultat de simula-
tion par CESAR-LCPC et les résultats analytiques
(Kurze, 1974), numériques par potentiels de
couche (Daumas, 1978), numériques par une
méthode analogue a la nétre (Seznec, 1980).

Les méthodes analytiques ne permettant pas de
résoudre les problemes a géométrie complexe, la
validation s’est opérée par comparaisons a d’au-
tres résultats numériques. On peut voir sur la
figure 3 Dl’efficacité d’un écran a section «en
T », dont le sommet est traité en absorbant. Les
résultats obtenus avec CESAR-LCPC en fonction
de la fréquence sont également trés proches de

ceux présentés par Hothersall et al. (1991).

L’introduction des surfaces de type « interaction
air/ milieu poreux » a également fait I’objet de
soigneuses validations théoriques et expérimen-
tales. Une série de mesures d’atténuation sonore
au-dessus d’un enrobé drainant a été réalisée sur
la piste de glissance du L.cpc en juillet 1994. Des
mesures d’effets de discontinuité enrobé drai-
nant/béton bitumineux fermé ont également été
réalisé€es, puis simulées sur CESAR-LcpPc. On note
12 aussi un trés bon accord entre les prévisions
numériques (CESAR-LCPC), analytiques (modele
de Rudnick, 1947) et expérimentales (fig. 4).
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Considérations numeériques

Comme pour tout probleéme harmonique, la
finesse du maillage doit nécessairement étre
adaptée a la fréquence de 1’onde sonore générée.
Ainsi, des tests de convergence ont montré qu’il
était nécessaire d’utiliser au moins quatre élé-
ments quadratique (a 3 nceuds) par longueur
d’onde pour discrétiser les contours. Il en fau-
drait d’avantage si I’on utilisait des éléments a
2 neeuds (interpolation linéaire). Ce point est
important, car la taille des systemes a résoudre
étant limitée, un probléme de grandes dimensions
géométriques ne pourra étre modélisé qu’en
basses fréquences, et seuls les problemes de
petites dimensions pourront étre modélis€s en
hautes fréquences. A titre d’exemple, on pourra
utiliser des éléments quadratiques d’une dimen-
sion d’un metre pour un calcul a 80 Hz, mais ces
éléments ne pourront mesurer plus de deux centi-
metres si I’on étudie le probleme a 4 000 Hz. Les

2 2,5 3

logarithme de nombre de noyaux N

fréquences de 80 et 4 000 Hz sont considérées
respectivement comme basse et haute fréquences
du spectre sonore émis par un trafic routier.

Un probleme de diffraction a 50 m derriere un
écran de 5 m de haut soumis a une source située
a 15 m devant I’écran jusqu’a 4 000 Hz a cepen-
dant été modélisé, ce qui a nécessité de construire
et résoudre un probleme a 1 200 noyaux de Green
(1 200 équations, 1 200 inconnues).

Les temps de calcul sont bien évidemment fonc-
tion de la taille du systeme. Plus précisément, en
admettant une relation du type T = aN™, entre le
temps de calcul par fréquence (T en minutes) et
le nombre de noyaux N (c’est-a-dire la dimen-
sion du systeme linéaire a construire et résou-
dre), I’exploitation de tous les tests effectués au
LRPC de Strasbourg sur station SUN SPARC IV
donne, avec une bonne corrélation, les valeurs
suivantes : a = 4,17.107 et m = 1,72 (fig. 5).
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Fig. 6 - Champ sonore a 500 Hz autour d’'un écran a casquette avec

glissiére de sécurité. Source a 7 m devant 'écran de 3,6 m de haut

a - Maillage du probléme.

b - Représentations des zones isophoniques.
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Quelques exemples
des possibilités de la méthode

L’avantage de la méthode numérique est bien sir
de permettre la modélisation de configurations
completes, faisant intervenir les particularités de
forme d’écrans, de coexistence de surfaces aux
propriétés d’absorption acoustique variées, la
présence de surface « poreuses » et les particula-
rités de géométrie de site.

Par ailleurs, la résolution par une méthode BEm
est considérée comme réalisée une fois la solution
déterminée sur les frontieres. La résolution aux
points intérieurs n’est ensuite qu’un calcul qui
s’appuie sur les valeurs frontieres. La détermina-
tion du champ sonore en un grand nombre de
points intérieurs n’est donc pas tres pénalisante et
ne nécessite pas en tout cas de refaire une résolu-
tion a chaque récepteur, a I’inverse des méthodes
analytiques par rayons sonores. Cette méthode est
donc trés adaptée a toutes les représentations du
champ sonore sous forme de zones ou courbes
isophoniques. La figure 6 présente un exemple de
représentation a 1’aide du post-processeur PEGGY
de la distribution de niveaux de bruit a 500 Hz
autour d’un écran « a casquette » dont la face
avant est traitée en absorbant, en présence d’une
glissiere de sécurité. La représentation est accom-
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