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RESUME 

La protection des riverains contre le bruit 
routier est une préoccupation d'environne­
ment très actuelle. Cet article présente les 
bases d'un modèle de prévision du fonction­
nement de dispositifs de protection de type 
écran antibruit. Les paramètres du problème 
étant multiples, le modèle retenu est un 
modèle numérique bidimensionnel par équa­
tions intégrales et éléments de frontière 
( B E M ) . La méthode a été implémentée dans 
le code C E S A R - L C P C , profitant ainsi des pos­
sibilités des pré- et post-processeurs. Des 
comparaisons avec des résultats expérimen­
taux ou issus de la littérature internationale 
ont permis de valider la méthode ainsi déve­
loppée, sur des configurations simples. Le 
modèle numérique offre l'avantage de per­
mettre l'étude de configurations beaucoup 
plus complexes et réalistes que les modèles 
analytiques, notamment en ce qui concerne 
la forme architecturée des écrans antibruit, la 
répartition des absorbants sur leur surface et 
l'interaction avec l 'environnement proche, 
s'agissant d'un terrain plat ou accidenté, 
engazonné, bitumineux fermé ou poreux... 

MOTS CLÉS : 10 - Écran antibruit -
Modèle numérique - Prévision - Protection -
Environnement - Forme - Conception -/Équa­
tion intégrale - Élément frontière - CESAR. 

Introduction 
Le bruit généré par les infrastructures routières est une 
préoccupation grandissante des pouvoirs publics, et la 
recherche de solutions techniques permettant de pré­
server l'environnement sonore ou d 'amél iorer le confort 
des riverains est largement encouragée. Parmi ces tech­
niques de lutte contre le bruit routier, les plus promet­
teuses actuellement sont l 'action sur la nature du revê­
tement routier, afin de réduire l 'émission sonore du 
roulement des véhicules, et l'interposition d'obstacles 
entre la route et les bâtiments avoisinants, dont les plus 
courants sont les écrans antibruit et les buttes de terre. 
L a compréhension fine de leur fonctionnement est capi­
tale, d'une part, pour optimiser leur dimensionnement 
et, d'autre part, pour connaître l'influence de leur 
forme, de la répartition des absorbants, de leur emploi 
combiné avec d'autres moyens de protection sonore tels 
que les chaussées absorbantes par exemple. L'efficacité 
acoustique de ces dispositifs de protection a été long­
temps abordée de manière empirique, mais est actuelle­
ment largement étudiée à l'aide de méthodes géométri­
ques (construction de rayons sonores) par analogie avec 
les lois de l'optique géométrique. En tout état de cause, 
ces méthodes reposent sur des hypothèses de configura­
tions relativement simples et restreintes : dans la 
majeure partie des cas, l 'écran est supposé droit, mince, 
vertical et homogène , i l doit reposer sur un sol parfaite­
ment plan et réfléchissant. Or, bien souvent, les confi­
gurations environnantes sont très complexes et, par 
souci d 'esthét ique, les écrans implantés dans la pratique 
présentent des formes architecturées et sont constitués 
de matériaux variés, sans qu ' i l soit possible d'en pré­
voir l 'incidence sur le comportement acoustique. 
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Notre travail a porté sur la modélisation des phé­
nomènes de diffraction du son par les obstacles 
dans un contexte très général, englobant notam­
ment les particularités de forme, de matériaux, 
d 'hétérogénéi tés de matériaux et d'interaction 
avec l'environnement immédiat . Seules les 
méthodes numériques sont susceptibles d ' inté­
grer tous ces paramètres . Dans un environnement 
non limité spatialement, les méthodes d 'é léments 
finis sont trop coûteuses et conduiraient à des 
systèmes trop gros pour les capacités actuelles 
de machine. E n revanche, les méthodes d 'équa­
tions intégrales (BEM), pour lesquelles la résolu­
tion s'effectue uniquement sur les surfaces l im i ­
tes, sont beaucoup plus efficaces. 

L'objet de cet article est de présenter les bases 
de la méthode BEM utilisée pour résoudre un tel 
problème d'acoustique environnementale, et de 
présenter quelques exemples de résultats et de 
validations. Le code de calcul que nous avons 
choisi comme support de la méthode est 
CESAR-LCPC, en raison des commodi tés offertes 
par les pré- et post-processeurs M A X et PEGGY, et 
en raison des bases communes existant entre les 
résolutions numériques d 'é léments finis et 
d '« équations intégrales ». Cette étude s'inscrit 
dans le cadre d'une thèse de l 'universi té de 
Strasbourg. (Université Louis Pasteur et IUT de 
Génie civil) réalisée en partie au LRPC de 
Strasbourg et au LCPC. 

Définition du problème 

Équation des ondes acoustiques 
en champ libre 
L e son est une perturbation de la pression atmos­
phérique qui se propage dans l 'air. Cette propa­
gation s 'étudie en observant le mouvement d'un 
élément de volume de milieu continu déforma-
ble. Les lois de conservation de la masse et de la 
quantité de mouvement, d'une part, les lois de 
comportement du milieu, d'autre part, permet­
tent d 'établir l 'équat ion des ondes acoustiques 
dans un milieu continu. Cette équation est cou­
ramment établie pour des ondes sonores se pro­
pageant dans l 'air sous les hypothèses suivantes : 

- le milieu est un fluide parfait (pas de cisaille­
ment, absence de viscosité), 
- le milieu est homogène et isotrope, 
- les variations de pression sont petites par rap­
port aux valeurs d 'équil ibre : c'est l 'hypothèse 
de l'acoustique dite « linéaire ». 

L 'équat ion qui régit la pression acoustique au 
point M à l'instant t peut alors s 'écrire : 

W ) - ^ = s ( „ 
c d t 

où S est un terme représentant la source sonore, 

Idp 
c = \\—— est la célérité des ondes. 

\ dp 
Lorsque, de plus, on suppose une dépendance 
temporelle de type harmonique : p ( M , t) = 
Re[p(M) exp(-iûjt)] où co est la pulsation de 
l'onde et i = ~J—Ï, on obtient l 'équat ion des 
ondes, ou équation de Helmholtz : 

Ap(M) + k 0

2 p(M) = S (2) 

co 
k 0 est le nombre d'onde défini par : k 0 = —. 

Pour l 'air supposé satisfaire les hypothèses 
ci-dessus, dans les conditions normales de pres­
sion atmosphérique, c = 340 m/s à 20 °C. 

L a connaissance de la pression acoustique, gran­
deur scalaire expr imée par une amplitude et une 
phase, ne suffit pas, à elle seule, à décrire com­
plètement l 'état acoustique au point M dans le 
milieu. L a vitesse des particules d'air v est la 
deuxième inconnue du problème. C'est une gran­
deur vectorielle qui est liée à la pression acous­
tique par la relation : 

gîïïd p ( M , t) + p 0

 3 V ^ ' 0 = Ô (3) 

où p 0 est la masse volumique de l 'air. 

Les sources de bruit 

Naturellement, i l n'existe pas de propagation 
d'onde sonore sans source émettr ice. L a modél i­
sation d'une source de bruit s'effectue à partir de 
sources élémentaires, générant chacune des 
ondes de forme particulière. Si l 'on exclut les 
sources générant des ondes « planes », que l 'on 
ne rencontre pas en acoustique extérieure (c'est 
le type d'onde se propageant à l ' intérieur d'un 
conduit, par exemple), deux grands types de 
sources existent : les sources ponctuelles et les 
sources linéiques. 

Les sources ponctuelles 

Le modèle consiste en une petite sphère puisante 
qui répartirait son énergie sonore de façon iso­
trope dans l'espace. Les ondes générées sont 
dites sphériques. Ce sont les ondes sonores les 
plus courantes. Une onde sphérique satisfaisant 
l 'équation de propagation (2) donne une pression 
acoustique en champ libre en un point M situé à 
une distance r de la source ponctuelle sous la 
forme (A est un terme d'amplitude sur lequel on 
reviendra ultérieurement) : 

exp(ik 0r) 
P(M) = A - ^ J - (4) 
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Les sources linéiques 
Elles se modélisent par une ligne source (ou un 
cylindre) infiniment longue, puisant uniformé­
ment et répartissant son énergie sonore de façon 
équiprobable dans le plan perpendiculaire à son 
axe, c 'est-à-dire sur des cylindres. Les ondes 
générées sont alors dites cylindriques. Dans la 
réalité, un train et même un trafic routier génè­
rent des ondes proches des ondes cylindriques. 
Dans la présente étude, c'est donc cette représen­
tation de ligne source que nous avons retenue 
pour modéliser le trafic routier en tant que 
source sonore. L a solution propagative générée 
par une source linéique en champ libre s 'écrit : 

p(M) = A - H 0

( l ) ( k 0 r) (5) 

où H 0

( ' est la fonction de Hankel de l r e espèce 
et d'ordre 0, encore appelée fonction de Bessel 
de 3 m e espèce. 

On vient de voir que la géométr ie de la source 
sonore pouvait conditionner le type d'ondes émi­
ses, leur forme, leur façon de se propager. Mais 
une source sonore est également caractérisée par la 
puissance de son émission. On définit la puissance 
acoustique moyenne émise par la source par : 

1 
T 

Re [p exp (—ico t] Re[ vexp (-ico t] 

n dS dt = - Re 
2 

p v * n dS (6) 

Dans cette expression S est une surface fermée 
quelconque entourant la source et ïï est la nor­
male extérieure à cette surface. De plus, T est la 
période et Re désigne la partie réelle. 

On peut alors montrer que, pour une source 
ponctuelle, le terme d'amplitude de la pression A 
exprimé ci-dessus est relié à la puissance acous­
tique de la source par : 

A = ^8 n p 0 c 0 P (7) 

Pour une ligne source, le terme d'amplitude A est 
relié à la puissance acoustique par unité de lon­
gueur P par une relation dépendant de la fré­
quence : 

A = 4 ^rc p 0 f P (8) 

Conditions aux limites 
et conditions de radiation 

Condition à l'infini: condition de Sommerfeld 
Cette condition exprime q u ' à l ' inf ini , la pression 
acoustique s'annule et que l'onde sonore est uni­
quement divergente. Cette condition s 'écrit : 

lim /Mr) i k 0 p(r) = 0 (9) 

avec e = 1 en 3-D, e = 1/2 en 2-D 

Condition de réflexion parfaite 
Les conditions aux limites les plus simples 
imposent soit la pression acoustique, soit la 
vitesse normale de l 'air aux parois. Il est cepen­
dant rare, en acoustique, qu'une condition aux 
limites impose la valeur de l'une ou l'autre de 
ces grandeurs. Le seul cas « sympathique » cor­
respond à une réflexion parfaite du son sur la 
surface considérée, c 'est-à-dire que l 'énergie 
sonore de l'onde rencontrant la surface est entiè­
rement réfléchie. Alors, la composante normale à 
la surface de la vitesse des particules d'air 
excitée s'annule, d 'où la condition aux limites : 

v = 0 (10) 

Notons que, d 'après l 'équation (3), la vitesse 
normale v n et le gradient de pression acoustique 
selon la normale sont liés par (pour une onde 
harmonique) : 

dp • , 
^ - i k 0 p ( ) c ( ) v n = 0 ( H ) 

L a condition de réflexion parfaite peut donc éga­
lement s'exprimer par : 

dp 
ch\ = 0 ( 1 2 ) 

Condition générale de réflexion partielle 
sur une surface quelconque 
Dans le cas plus général, lorsqu'un son se pro­
page au-dessus d'une surface, seule une partie de 
son énergie est réfléchie, le reste étant absorbé par 
la surface. Le pouvoir d'absorption de la surface 
limite est traduit par l ' impédance acoustique nor­
male de surface, définie en un point de la surface 
comme le rapport de la pression sur la vitesse 
particulaire selon la norme à cette surface : 

P Z„ = (13) 

Ains i , la condition aux limites ne donne pas direc­
tement la pression ou la vitesse particulaire, mais 
le rapport entre les deux. Pour la plupart des sur­
faces absorbantes (surface engazonnée, tapis, 
mousse naturelle ou synthétique, absorbants 
placés sur écrans acoustiques routiers...), cette 
impédance est supposée constante sur la surface, 
indépendante de la position de la source sonore 
excitatrice, (hypothèse dite de réaction localisée). 
Cette impédance peut se mesurer sur des échantil­
lons de matériaux au moyen d'un tube à ondes 
stationnaires ou in situ par technique sonore 
impulsionnelle. Des modèles existent permettant 
d'estimer cette impédance de surface en fonction 
des caractéristiques physiques du matériau. L e 
plus largement utilisé est le modèle empirique de 
Delany et Bazley (1970) qui, sous l 'hypothèse de 
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réaction localisée, s 'écrit : 

Z n / p 0 c 0 - [1 + 0,0571 C T 0 ' 7 5 4 ] + i [0,087 C - 0 ' 7 3 2 ] 

(14) r

 fPo avec C = — 

R s est la résistance au passage de l 'air, qui s'ex­
prime en Rayls/m (1 Rayl = 1 Nm~ 3s). L a résis­
tance au passage de l 'air est égale à l'inverse de 
la perméabil i té à l 'air. El le s'obtient expér imen­
talement par les techniques traditionnelles de 
mesure de perméabil i té . 

E n combinant les équations (11) et (13), on 
exprime souvent la condition de surface par une 
relation ne faisant intervenir que la pression et 
son gradient : 

dp 
dn 

i k 0 ß n p = 0 (15) 

où ß n 

Poco 
est encore appelée 1'admittance 

normale de surface. 

Le traitement de l'interface air/milieu poreux 
Pour certaines surfaces limites, comme les sur­
faces à forte porosité de type enrobés drainants, 
1 ' hypothèse selon laquelle 1 ' impédance normale de 
surface est constante n'est plus valide. 
L ' impédance de surface dépend de la position de la 
source sonore et le matériau poreux intervient dans 
toute son épaisseur sur l 'at ténuation sonore et non 
plus seulement localement en surface. En consé­
quence, un traitement particulier de l'interface 
entre 1 ' air et un milieu poreux est nécessaire afin de 
définir une condition aux limites acceptable. 

L a prise en compte de la couche poreuse et de 
son interaction avec l 'air nécessite d'exprimer 
les phénomènes propagatifs à l ' intérieur du 
milieu poreux. Nous utiliserons, pour décrire ce 
milieu, le modèle phénoménologique développé 
par Hamet (1992), qui assimile le milieu poreux 
à un fluide compressible dissipatif dans lequel 
sont introduits des phénomènes de dissipation 
d 'énergie sonore par thermoconductivi té . L a pro­
pagation du son se traduit par les mêmes équa­
tions (2) et (3) que dans l 'air, mais la constante 
de propagation k 0 et la masse volumique p 0 de 
l 'air sont remplacées respectivement par la 
constante de propagation dans le milieu k p et la 
densité équivalente p p du milieu poreux. Ces 
deux grandeurs sont complexes afin de traduire 
la dissipation d 'énergie ; elles s'expriment par : 

• ^^o ^ ^ ^ n ^r r r tZf f <16> 
et 

Pp = Po ^ 1 + i (17) 

où f et f e sont des fréquences définies par : 

R. R c Q 
et f = 

» 2xcp 0K 
(18) 

2xtp 0P r 

Q., R s , K sont respectivement la porosité, la résis­
tance au passage de l 'air et le facteur de forme 
du milieu poreux ( K traduit la forme plus ou 
moins tortueuse des pores), 

y = 1,4 : le rapport des chaleurs spécifiques, 

P r : nombre de Prandtl. 

L ' indice « 0 » se réfère à l 'air, et « p » au milieu 
poreux. 

Le traitement de l'interface entre air et milieu 
poreux se fait par application des relations de 
continuité : 

de la pression : p a poreux (19) 
de la composante normale de la vitesse parti-

cul aire : v n(air) n(poreux)* 

Résolution numérique 
par équations intégrales 

Formulation intégrale 
Considérons un écran acoustique bidimensionnel 
(longueur infinie) de forme quelconque reposant 
à la surface du sol et une source de bruit linéi­
que, de puissance P(co) localisée en x s (fig. 1). 

Fig. 1 - Configuration d'une section du problème. 

Le problème de la diffraction, par l 'écran, de 
l'onde acoustique émise par la source revient à 
trouver le champ de pression p(x) satisfaisant 
l 'équat ion des ondes (2) et les conditions aux 
limites à la surface S du sol et de l 'écran. Si 
P(x,y) désigne la fonction de Green de l 'équat ion 
de Helmholtz ce champ de pression vérifie, indé­
pendamment des conditions aux limites, l 'équa­
tion intégrale : 

e(y) p(y) + 

f3P(x,y) 

• V 

= P m c (y ) 

p ( x ) - P ( x , y) ^ | ^ | d a ( x ) 

(20) 
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Dans l 'équat ion précédente p m c (y) est l'onde de 
pression incidente émise par la source. C'est, à 
un coefficient multiplicatif près, dépendant de la 
puissance P (8), la fonction de Green P(x, y) 

P i n c (y) A(P) P(y, x s) (21) 

L a fonction 0(y) est donnée par : 

{ 1/2 si y e S en tout point régulier 
1 si y e Q (22) 
0 si y é Q. 

Q est le domaine de l'espace dans lequel se pro­
gagent les ondes c 'est-à-dire typiquement le 
milieu aérien au-dessus du sol. 

0(y) ne prend la valeur 1/2 qu'en tout point régu­
lier de S. 

A u x points irréguliers de S, 0(y) dépend en fait 
de l'angle solide formé par S. 

L 'équat ion (20) montre qu'en tout point intérieur 
à Cl, le champ de pression est explicitement 
déterminé par les pressions et leurs dérivées nor­
males sur la surface S. Le problème revient alors 
à résoudre l 'équat ion intégrale (20) pour y G S. 

Discrétisation 
L a résolution numérique de cette équation inté­
grale s'appuie sur une approximation des pres­
sions et de leurs dérivées normales à l'aide d 'é lé­
ments finis de surface. Sur un élément particulier 
e les pressions et leurs dérivées normales sont 
approchées au moyen de fonctions d'interpola­
tion Nf(x) et Mf(x) (i = numéro de nœud) : 

p(x) = X N f ( x ) P i et ^ ( x ) = X M?(x)q? (23) 
i,e d n i,e 

Le champ de pression étant continu sur S, i l est 
représenté par les valeurs nodales P i . À l'inverse, 
le champ dp/dn n'est pas nécessairement continu 
sur S. Dans la description précédente, i l est 
continu par élément et représenté par les valeurs 
nodales de chaque élément qui sont notées qf. 
Bien que les fonctions Nf(x) et Mf(x) puissent 
être du point de vue théorique différentes, pour 
des raisons pratiques de mise en œuvre elles sont 
généralement égales. L a substitution des expres­
sions (23) dans (20) conduit alors au calcul des 
fonctions : 

3P(x, y) 
Qf(y) = 1 3n 

Nf(x) da(x) (24) 

Pf(y) = P(x, y) Mf(x) da(x) (25) 

Lorsque y est localisé sur l 'é lément de surface S e 

les deux intégrales sont alors singulières. L a sin­
gularité de la fonction de Green P(x,y) et la défi­
nition m ê m e de la fonction 0(y) montrent que 

l ' intégrale (25) garde le sens d'une intégrale de 
Riemann alors que (24) doit être prise au sens des 
valeurs principales de Cauchy. Le calcul numé­
rique de (24) et (25) nécessite alors de trans­
former les intégrales par une procédure dite de 
régularisation qui permet ensuite d'appliquer les 
techniques classiques d ' intégration numérique 
par points de Gauss. Différentes procédures de 
régularisation existent dans la littérature [Dangla 
( 1989), Bonnet ( 1986), Rizzo et al. ( 1985)]. Celle 
que nous avons choisie ic i et que nous ne repre­
nons pas, est celle décrite dans Dangla (1989). 

Choisissons pour y les coordonnées d'un nœud 
particulier j (point dit de collocation). 
L 'équat ion intégrale (20) se met alors sous la 
forme discrétisée : 

ejPj + X(Q>, - P^qf) - Pj n (26) 

où les coefficients Q?; et P? correspondent aux 
expressions données par (24) et (25) pour le 
choix particulier de y. Lorsque l 'on considère 
tous les nœuds du maillage, les équations (26) 
prennent la forme matricielle, 

[ Q ] (p) - [P]{q) = (P" (27) 

Les composantes du vecteur {q} sont les qf 
lorsque i et e parcourent tous les nœuds et tous 
les éléments de surface alors que celles du vec­
teur {p} sont les seuls p ; . Les composantes des 
matrices [Q] et [P] sont aisément identifiées aux 
expressions : 

(28) 

où k est le numéro attribué au nœud / de l 'élé­
ment e. 

Prise en compte des conditions aux limites 
Le système (27) n'est que la forme discrétisée de 
l 'équation (20) qui ne prend pas en compte les 
conditions aux limites. L a résolution du pro­
blème nécessite de spécifier ces conditions sur S. 
Ces conditions aux limites peuvent s'exprimer 
par la donnée en chaque nœud j soit des qj pour 
tous les éléments e en contact avec j soit de la 
pression p̂  et des qj pour tous les éléments e, 
sauf un, en contact avec j. Ces conditions aux 
limites ainsi exprimées garantissent la définition 
d'un problème bien posé, c 'est-à-dire l'obtention 
d'autant d 'équat ions que d'inconnues. 

Prenons l'exemple d'une surface S purement 
réfléchissante. Les conditions aux limites s'ex-
primant par (12), le vecteur des pressions 
nodales {p} est alors solution du système 
linéaire : 

[Q] (P) (29) 
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Le champ de pression en tout point de Q. est 
alors donné par l'expression : 

dP(x, y) 
P(y) (y) - 3n 

p(x) da(x) (30) 

où p(x) = X N i ( x )Pi 

L a surface n 'é tant , dans le cas général , jamais 
parfaitement réfléchissante, l'absorption du son 
par la surface conduit à introduire la condition à 
la limite définie par (15). L a pression p(y) est 
alors solution de l 'équation intégrale : 

e(y)p(y) + 

ik 0 p n (y) P(x,y) p(x) da(x) 
(dP(x, y) 

= P , n c (y) (31) 

Dans le cas où la fonction admittance P n(y) est 
constante par élément, on peut facilement se 
ramener à la procédure précédente pour prendre 
en compte cette condition à la limite. 
Introduisons le changement de variable 

q!6 = qf - i k 0 p > , (32) 

et notons de même : 

Q; = Qn - ikoPSPJi (33) 

L'équat ion discrétisée (26), écrite en terme de 
l'inconnue q; 6, prend alors la forme : 

«•P, ' X ( Q ' P : - = Pi' (34) 

Ains i , pour le problème défini par la condition à 
la limite (15) le vecteur des pressions nodales {p} 
est solution d'un système linéaire analogue à 
(29) : 

[Q ' ]{p l = tpinc} (35) 
avec 

Q : , = 0,0,, + £ Q j f (36) 
e 

Le champ de pression en tout point de ¿1 est 
cette fois donné par : 

p(y) P' n c(y) -

y ) - ik0Pn(y) P(x,y) ] p(x) da(x) (37) 

Interface air/milieu poreux 
L'introduction de surfaces « poreuses » nécessite 
de formuler deux problèmes couplés, l 'un dans 
l 'air, l'autre dans le milieu poreux. On obtient 
alors à l'interface : 
- une équation intégrale dans l 'air aboutissant à 
un système linéaire (27), 
— une autre équation dans le milieu poreux (du 
même type que dans l 'air). 

Les deux équations intégrales sont ensuite cou­
plées par l'expression de la continuité de la pres­
sion et de son gradient à l'interface (19), pour 
finalement donner le système couplé : 

[Q]{p} - [P]{q} = 

[Q'lípJ - [P 'Hq} {0} 

Développements numériques 
et validation 

Implementation dans CÉSAR-LCPC 

Le logiciel CESAR-LCPC est composé de trois 
programmes indépendants : les pré- et post-pro­
cesseurs graphiques nommés MAX et PEGGY et le 
code de calcul par éléments finis proprement dit 
CÉSAR. Ces trois programmes de base communi­
quent entre eux grâce à une base de données for­
mées de fichiers binaires dans lesquels sont 
stockés les données et résultats de la modélisa­
tion du problème considéré. 

MAX CESAR PEGGY 

B a s e d e d o n n é e s 

Le programme CESAR est un programme modu­
laire, c 'est-à-dire fonctionnant par l 'appel de 
mots-clés de quatre lettres correspondant à un 
module soit de lecture et de gestion de données , 
soit d 'exécut ion d'un type particulier de problème 
avec un type particulier de méthode ou d'algo­
rithme. L a méthode des équations intégrales a été 
implémentée au sein du code d 'é léments finis 
CESAR, afin de profiter de l'environnement des 
pré- et post-processeurs graphiques permettant 
d'effectuer le maillage, la préparation des données 
du problème ainsi que la visualisation des résul­
tats. Un certain nombre de modules spécifiques à 
la méthode des équations intégrales ont donc été 
introduits au sein du code CESAR. Cependant, cer­
tains modules de lecture et de gestion de données 
déjà existants servent à la construction d'un jeu de 
données. L a liste des mots-clés suivants permet de 
visualiser l ' enchaînement des modules pour la 
résolution d'un problème par équations intégrales. 

Mots-clés déjà existants 

COOR : Lecture des coordonnées des nœuds de 
surface, 

ELEM : Lecture de la numérotat ion des élé­
ments de surface, 

COND : Lecture des conditions aux limites por­
tant sur les inconnues principales du problème 
c 'est-à-dire les p,. 
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Mots-clés Introduits dans CÉSAR 

E Q U A : Aiguillage vers la méthode des équa­
tions intégrales, 

CHAF : Lecture des conditions aux limites por­
tant sur les inconnues secondaires du problème 
c 'est-à-dire les qf (ou q^), 

NOYA : Lecture de la numérotat ion des 
noyaux. U n noyau est la fonction (de Green) 
définie par : 

g(x) = Z Aj P(x, X j ) 
je jjl,..jn) 

où Xj est le vecteur des coordonnées du nœud j . 
L'ensemble des n nœuds {jl,..jn} est la numérota­
tion du noyau. Les n scalaires Aj définissent l 'am­
plitude du noyau (généralement n=l et A , = 1). 

DYNF : Module d 'exécut ion correspondant à la 
résolution du système (27) ou (35). Le calcul est 
effectué en nombres complexes et pour une liste 
de fréquences donnée. 

En pratique, les données géométriques de 
contour et de maillage sont saisies à l'aide de 
M A X . Puis, pour chaque groupe d 'é léments , les 
paramètres acoustiques sont introduits dans la 
base de données : 

**• Paramètres du milieu de propagation : 
- la célérité des ondes dans le milieu (c), 
- la densité du milieu (p 0) ; 

5 * Paramètres de source : 

- coordonnées de la source, 
- puissance sonore émise (terme A du § 
Formulation intégrale) ; 

^ Paramètres de conditions aux limites : 

- épaisseur utile du matériau absorbant, 
- résistance au passage de l 'air (R s ) , 
- la porosité (£2), le facteur de forme (K) 
dans le cas d'interface avec un milieu poreux. 

Validation des modules acoustiques 
L a littérature spécialisée est riche en résultats de 
prévisions d 'at ténuation par les écrans. L a plu­
part des cas sont traités par des méthodes analy­
tiques (méthodes de rayons par analogies avec 
l'optique géométr ique) . Une première étape de 
notre travail a donc été de valider le modèle BEM 
développé sur CESAR-LCPC par rapport à de tels 
résultats analytiques. Sur les nombreux cas trai­
tés, un excellent accord a été trouvé. U n exemple 
de l 'efficacité d'un écran droit, mince et réflé­
chissant de 4 m de hauteur, reposant sur un sol 
plan réfléchissant est présenté sur la figure 2. L a 
source sonore est placée au sol, 19 m devant 
l 'écran. L a courbe représente la perte par inser­
tion de l 'écran notée PI sur la figure (c'est la dif­
férence de niveau sonore avec et sans l 'écran) 
calculée en fonction de la distance derrière 

-10 

-15 

-20 

10 20 
Distance derrière l'écran (m) 

30 40 50 

.CESAR -LCPC 
» Kurze 
• Daumas 

- - Seznec 

-25 
Perte par insertion (dB) 

Fig. 2 - Perte par insertion d'un écran mince réfléchissant 
à 500 Hz. Comparaison entre CESAR ( ), Kurze (*), 

Daumas (m) et Seznec (- - - -). 

Atténuation (dB) 
35 ,_ 

30 
25 
20 
15 
10 

5 

• C E S A R - L C P C 
Hothersall 

63 125 250 500 1000 2000 4000 
Fréquence (Hz) 

Fig. 3 - Atténuation d'un écran en T en fonction de la fré­
quence. Comparaison entre CESAR ( ), et Hothersall 

et al. (m). 

l 'écran pour une fréquence de 500 Hz. On note 
une bonne corrélation entre le résultat de simula­
tion par CESAR-LCPC et les résultats analytiques 
(Kurze, 1974), numériques par potentiels de 
couche (Daumas, 1978), numériques par une 
méthode analogue à la nôtre (Seznec, 1980). 

Les méthodes analytiques ne permettant pas de 
résoudre les problèmes à géométrie complexe, la 
validation s'est opérée par comparaisons à d'au­
tres résultats numériques. On peut voir sur la 
figure 3 l 'efficacité d'un écran à section « en 
T », dont le sommet est traité en absorbant. Les 
résultats obtenus avec CESAR-LCPC en fonction 
de la fréquence sont également très proches de 
ceux présentés par Hothersall et al. (1991). 

L'introduction des surfaces de type « interaction 
air/ milieu poreux » a également fait l'objet de 
soigneuses validations théoriques et expérimen­
tales. Une série de mesures d 'at ténuation sonore 
au-dessus d'un enrobé drainant a été réalisée sur 
la piste de glissance du LCPC en juillet 1994. Des 
mesures d'effets de discontinuité enrobé drai­
nant/béton bitumineux fermé ont également été 
réalisées, puis simulées sur CESAR-LCPC. On note 
là aussi un très bon accord entre les prévisions 
numériques (CESAR-LCPC), analytiques (modèle 
de Rudnick, 1947) et expérimentales (fig. 4). 
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Fig. 4 -
Atténuation sonore 
au-dessus d'une 
chaussée enrobé drai­
nant. Hauteur source 
0,3 m, hauteur récepteur 
0,3 m, distance source 
récepteur 4 m. 
Numérique CESAR (m), 
analytique Rudnick (—), 
expérimental ( ). 
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2000 
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Fig. 5 -
Corrélation entre temps 
de calcul et taille du 
système. 

Ig Temps (min) 
3,5 

3 _ 

2,5 

1,5 

0,5 

1,5 

Coefficient de corrélation = 0,97 
Régression : Ig T = 1,72 Ig N - 2,38 

2,5 3 
logarithme de nombre de noyaux N 

Considérations numériques 
Comme pour tout problème harmonique, la 
finesse du maillage doit nécessairement être 
adaptée à la fréquence de l'onde sonore générée. 
A i n s i , des tests de convergence ont montré qu ' i l 
était nécessaire d'utiliser au moins quatre élé­
ments quadratique (à 3 nœuds) par longueur 
d'onde pour discrétiser les contours. Il en fau­
drait d'avantage si l 'on utilisait des éléments à 
2 nœuds (interpolation linéaire). Ce point est 
important, car la taille des systèmes à résoudre 
étant l imitée, un problème de grandes dimensions 
géométr iques ne pourra être modélisé qu'en 
basses fréquences, et seuls les problèmes de 
petites dimensions pourront être modélisés en 
hautes fréquences. A titre d'exemple, on pourra 
utiliser des éléments quadratiques d'une dimen­
sion d'un mètre pour un calcul à 80 Hz , mais ces 
éléments ne pourront mesurer plus de deux centi­
mètres si l 'on étudie le problème à 4 000 Hz . Les 

fréquences de 80 et 4 000 H z sont considérées 
respectivement comme basse et haute fréquences 
du spectre sonore émis par un trafic routier. 

U n problème de diffraction à 50 m derrière un 
écran de 5 m de haut soumis à une source située 
à 15 m devant l 'écran j u s q u ' à 4 000 H z a cepen­
dant été modélisé, ce qui a nécessité de construire 
et résoudre un problème à 1 200 noyaux de Green 
(1 200 équations, 1 200 inconnues). 

Les temps de calcul sont bien év idemment fonc­
tion de la taille du système. Plus précisément, en 
admettant une relation du type T = a N m , entre le 
temps de calcul par fréquence (T en minutes) et 
le nombre de noyaux N (c 'est-à-dire la dimen­
sion du système linéaire à construire et résou­
dre), l 'exploitation de tous les tests effectués au 
LRPC de Strasbourg sur station SUN SPARC IV 
donne, avec une bonne corrélation, les valeurs 
suivantes : a = 4,17.10" 3 et m = 1,72 (fig. 5). 
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Quelques exemples 
des possibilités de la méthode 
L'avantage de la méthode numérique est bien sûr 
de permettre la modélisation de configurations 
complètes , faisant intervenir les particularités de 
forme d 'écrans , de coexistence de surfaces aux 
propriétés d'absorption acoustique variées, la 
présence de surface « poreuses » et les particula­
rités de géométr ie de site. 

Par ailleurs, la résolution par une méthode BEM 
est considérée comme réalisée une fois la solution 
déterminée sur les frontières. L a résolution aux 
points intérieurs n'est ensuite qu'un calcul qui 
s'appuie sur les valeurs frontières. L a détermina­
tion du champ sonore en un grand nombre de 
points intérieurs n'est donc pas très pénalisante et 
ne nécessite pas en tout cas de refaire une résolu­
tion à chaque récepteur, à l'inverse des méthodes 
analytiques par rayons sonores. Cette méthode est 
donc très adaptée à toutes les représentations du 
champ sonore sous forme de zones ou courbes 
isophoniques. L a figure 6 présente un exemple de 
représentation à l'aide du post-processeur PEGGY 
de la distribution de niveaux de bruit à 500 H z 
autour d'un écran « à casquette » dont la face 
avant est traitée en absorbant, en présence d'une 
glissière de sécurité. L a représentation est accom­

pagnée du maillage correspondant construit à 
l'aide de M A X . A noter que seule la densité du 
maillage des contours est importante pour la réso­
lution, le maillage de l'espace autour de l 'écran 
ne servant q u ' à la représentation des isophones. 

Conclusions et perspectives 
Les nombreuses simulations par CESAR-LCPC ont 
permis de valider l ' implémentat ion de modules 
« acoustiques » permettant de résoudre un pro­
blème d'acoustique extérieure par méthode 
d 'équat ions intégrales et d 'é léments de frontière. 
Maintenant que ces modules acoustiques sont 
validés, une étude paramétr ique peut être entre­
prise pour quantifier les effets de formes ou d 'hé­
térogénéité de matériaux sur les écrans. L a puis­
sance de la méthode réside dans la possibilité de 
déterminer une répartition du champ acoustique à 
proximité de l 'écran, permettant ainsi de visua­
liser directement les zones les plus sensibles, sur 
lesquelles i l sera plus gratifiant d'agir. Il reste 
néanmoins à intégrer « proprement » la gestion 
des modules acoustiques au niveau de l 'entrée de 
données (pré-processeur) et de la sortie graphique 
du post-processeur. Cette étude aura permis en 
outre de démontrer les performances pluridisci­
plinaires du code de calcul CESAR-LCPC. 
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Ni imenc.il modélisation of antr-noise road screens in their environment 
F ANFOSSO LEDEE P DANGLA 

This papet presents the basis Of a numerical model for the prediction of the acoustic behaviour of road noise reducing 
barriers As the parameters to be considered in the problem are varied and numerous a numerical BEM model has 
been u&ed The method has been implemented in the general numerical code CESAR LCPC thus taking advantage of 
the pre and post processors facilities The method developed in the code has been validated through many compari­
sons with expenmental analytical or other numerical results from the international literature Very good agreement was 
found The advantage of the BEM method is of course to allow for Complicated configurations existing in roat cases 
barriers with sophisticated shapes, with non homogeneous repartition of absorbing material specific interaction of the 
barrier with its close environment (ground of any geometry or acoustic properties) On this point special consideration 
w,as given to porous surfaces <ind interaction of poious road surface with noise barnei 
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