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R E S U M E 

Dans cet article, le projet C A M U S (Concep­
tion et Ana lyse de MUrs sous Sélsmes, 
1997-1998) est présenté à travers la contri­
bution du Laboratoire central des Ponts et 
Chaussées (LCPC) au concours de prévision 
lié à ce programme (modélisation numérique 
de la réponse sismique d'un bâtiment). La 
maquette de ce bâtiment a été testée sur la 
table vibrante du Commissar iat à l'énergie 
atomique (CEA) afin d'analyser expérimenta­
lement s a réponse sismique. 

C e premier article concerne la modélisation de 
la réponse dynamique linéaire de la structure 
(réalisée à l'aide de C É S A R - L C P C ) et l 'analyse 
de l'influence des caractéristiques du modèle 
sur les paramètres modaux. En effet, l 'analyse 
des modes propres de la structure seule ne 
permet pas de retrouver les fréquences pro­
pres déterminées expérimentalement. 
L 'ensemble structure/table vibrante est alors 
pris en compte dans deux modèles complets 
(l'un bidimensionnel, l'autre tridimensionnel). 
Les fréquences propres obtenues sont alors 
plus faibles et approchent correctement les 
valeurs réelles. Le mode propre vertical, dû à la 
soup lesse des supports de la table, peut alors 
être détecté. 

La détermination de la réponse dynamique 
linéaire est réalisée à i'aide d'une méthode 
de superposit ion modale et la contribution de 
chacun des modes est analysée (masses 
effectives). L'analyse dynamique non linéaire 
et la comparaison avec les résultats expéri­
mentaux seront proposées dans un second 
article (Aouameur et ai, à paraître). 

M O T S CLÉS : Modèle numérique - sismique -
Éléments finis (méthode) - Vibration -
Modèle (sauf math.) - Temps (durée) -
Ouvrage d'art (gén.) - Bâtiment 
Comportement - Dynamique //table vibrante. 

Introduction 
En génie parasismique, les expérimentations sur 
modèles réduits présentent un grand intérêt. Elles per­
mettent, en effet, d'analyser sur des dispositifs de 
dimensions raisonnables des phénomènes aussi variés 
que la propagation des ondes sismiques (Semblât et 
Luong, 1998). le comportement dynamique des struc­
tures (Buland, 1995) ou l'interaction sol-structure (Piti-
lakis et al., 1994). 

Les expérimentations sismiques sur les bâtiments peu­
vent ainsi être réalisées à échelle réduite sur table 
vibrante. Il est toutefois nécessaire de respecter certaines 
règles, appelées loi? de similitude, afin d' obtenir sur la 
maquette les mêmes niveaux de contrainte et d 'accéléra­
tion que sur le bâtiment en vraie grandeur (cf. « Expéri­
mentations dynamiques sur table vibrante »). 
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Une première expérimentation de ce type s'est 
déroulée entre 1990 et 1992 (projet C A S S B A : 
Conception et Analyse Sismique des Structures 
en Béton Armé) . L'objectif de ce projet était 
d 'étudier la réponse sismique d'un bâtiment à 
murs porteurs de huit étages à l'aide d'essais sur 
table vibrante (Gantenbein et al, 1994). 

Le projet C A M U S (Conception et Analyse de 
M U r s sous Séismes) a ensuite vu le jour afin de 
caractériser pleinement la réponse dynamique 
non linéaire du m ê m e type de bâtiment dans 
d'autres conditions de chargement sismique 
( C E A , 1997). Outre les expérimentat ions sur 
modèle réduit réalisées sur la table vibrante 
« Azalée » du Commissariat à l 'énergie ato­
mique ( C E A ) et le travail de simulation et d'ana­
lyse de l 'équipe C A M U S , un concours de prévi­
sions international a été proposé pour modéliser 
la structure et analyser sa réponse à l'aide de 
méthodes numériques. Onze équipes différentes 
(Europe, Canada, É t a t s - U n i s , Japon) ont parti­
cipé à ce concours de prévisions et ont présenté 
leurs résultats lors de la X I e Conférence euro­
péenne de génie parasismique ( C E A , 1998). 

Expérimentations dynamiques 
sur table vibrante 

Lois de similitude pour les essais 
sur table vibrante 
Les essais sur modèle réduit (centrifugeuse, table 
vibrante, soufflerie, etc.) présentent un grand 
intérêt pratique et économique. Ils nécessitent, 
toutefois, le respect de règles précises, appelées 
lois de similitude. Ces lois permettent, par exem­
ple, de retrouver à échelle réduite les mêmes 
niveaux de contrainte qu'en grandeur réelle sur 
l'ouvrage prototype. Le comportement du maté­
riau est alors similaire pour la maquette et le pro­
totype. 

Pour les essais sur table vibrante, en notant / le 
rapport de réduction sur les distances (/ < 1) et 
en considérant l 'équat ion dimensionnelle don­
nant la contrainte due aux forces de pesanteur 
(Buland, 1995), la condition de similitude sur la 
masse de la structure, soit m , est la suivante : 

où a et g sont les échelles de similitude sur la 
contrainte et sur la pesanteur. Comme ces deux 
échelles valent l 'unité (même contraintes et 
même forces de pesanteur sur la maquette qu'en 
grandeur réelle), l 'échelle de similitude sur la 
masse vaut donc : m" = ( f ) 2 . 

Ceci donne la condition de similitude suivante 
pour la masse volumique : 

. „ . 1 
P i d o u p - / 

Si l 'échelle des distances est réduite d'un facteur 
3 (/ = 1/3), i l est donc nécessaire de multiplier 
la masse volumique par un facteur 3. Il n'est pas 
possible de modifier la masse volumique du 
matériau, car celui-ci doit se comporter de la 
même manière sur la maquette qu'en grandeur 
réelle. Les structures utilisées pour les essais sur 
table vibrante sont donc pourvues de masses 
additionnelles permettant de respecter la condi­
tion de similitude sur la masse volumique 
(cf. « Description de la structure C A M U S »). En 
considérant maintenant la contrainte due à la sol­
licitation sismique (Buland, 1995), l 'équation 
aux dimensions obtenue s 'écrit : 

m y* ,. . / , f-i 
a = '— d ou Y = — = 1 e t

 t = yl 
I i 

où Y c t t s o n t les échelles de similitude sur l 'ac­
célération et sur le temps. En plus de la s imil i ­
tude de contrainte (a = 1), i l y a donc s imi l i ­
tude d'accélération (Y = 1). Il faut, en revan­
che, respecter un rapport de similitude (/")''" sur 
le temps. Les signaux d'accélérat ion utilisés 
pour les essais sur table vibrante ont donc la 
même amplitude qu'en grandeur réelle, mais ils 
doivent être contractés dans le temps. Pour réa­
liser des essais dynamiques sur table vibrante, i l 
faut ainsi augmenter la masse volumique du 
modèle réduit d'un facteur 1/1 et contracter 
l 'échelle des temps d'un facteur (/"')1/2. Les fré­
quences de la maquette seront donc augmentées 
de ( l / / )''" par rapport à la réalité. Le respect de 
ces lois de similitude permet d'obtenir sur 
maquette les mêmes contraintes que pour la 
structure réelle. 

Le projet CASSBA 
L'objectif de ce projet était d 'étudier la réponse 
sismique d'un bâtiment de huit niveaux, à murs 
porteurs en béton faiblement armés et chaînés. 
Financé par le Ministère de la recherche, la F N B , 
le C E A et Cogema, ce programme a été réalisé 
par le C E A , le G R E C O , le C E B T P et un groupe 
d'experts en génie parasismique. 

Après définition d'un bâtiment type, une 
maquette, à l 'échelle 1/3 sur les longueurs et 1/9 
sur les masses, a été testée en étant simplement 
posée sur la table vibrante « Azalée » du C E A 
(Gantenbein, 1994). Plusieurs équipes françaises 
ont réalisé des simulations numériques afin 
d'analyser les réponses linéaire et non linéaire de 
la structure (Mazars, 1994). Le L C P C a participé 
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1er mode, f, = 4,32 Hz 2e mode, f 2 = 6,93 Hz 

LCTC 

3e mode, f 3 = 10,8 Hz 

Fig. 1 - Modes propres de la structure du projet CASSBA. 

au projet C A S S B A en analysant les caractéristi­
ques modales et la réponse dynamique linéaire 
de la structure (Grégeois, 1992). La structure est 
modélisée en trois dimensions à l'aide d 'é lé­
ments de volume (pour les longrines-semelles), 
d 'é léments de coque (planchers, murs) et d 'é lé­
ments de poutre (contreventements métall iques). 
L a masse de la structure est de 91 t pour une 
hauteur totale de 7,596 mètres. 

La figure l montre les trois premiers modes pro­
pres de la structure C A S S B A déterminés à l'aide 
du progiciel de calcul par cléments finis 
C É S A R - L C P C (Humbert, 1989). Le maillage 
comporte 1 997 nœuds et 1 823 éléments . Le 
premier mode propre correspond à une flexion 
transversale, le deuxième à une flexion longitu­
dinale et le troisième à la torsion. Les modes 
d'ordre supérieur sont donnés dans l'article de 
Grégeois et al. (1992). 

Les expérimentat ions menées sur table vibrante 
ont montré un soulèvement de la structure au 
cours du mouvement de la table créant ainsi un 
effet de filtre sur la sollicitation sismique. La 
structure a donc été peu endommagée et l'ana­
lyse dynamique non linéaire de sa réponse n'a 
pas permis de caractériser pleinement les effets 
irréversibles dus au chargement sismique. La 
transmission des efforts aux murs porteurs est en 
effet restée limitée du fait du balancement de la 
structure (Gantenbein, 1994 ; Mazars, 1994, 
1998). 

Le projet CAMUS 

En continuité à C A S S B A . la recherche 
C A M U S s'inscrit dans le cadre de la maîtrise 
du risque sismique pour une technique de 
construction qui utilise le concept de structure 
à murs faiblement armés-chaînés. Le projet est 
soutenu par le C E A , la F N B , le Plan génie 
c iv i l et E D F , et les acteurs sont le C E A , le 
réseau G E O , le C E B T P et un groupe d'experts 
en génie parasismisque. L'objectif de ces tra­
vaux est d 'étudier la réponse sismique d'un 
bâtiment de plusieurs étages dans d'autres 
conditions d'appui que C A S S B A afin d 'éviter 
l'effet de filtre créé par le soulèvement de la 
maquette (Coin et ai, 1998). La structure est 
constituée de béton faiblement armé et est 
ancrée à la table vibrante ( C E A , 1997 ; 
Mazars, 1998). L a participation du L C P C au 
concours de prévisions international du projet 
C A M U S s'est faite en s'appuyant sur le progi­
ciel de calcul par éléments finis C É S A R - L C P C 
(Humbert, 1989). Les différentes étapes de la 
modélisation sont les suivantes : 

>- discrétisation et modélisation des différents 
éléments structuraux, 
>- détermination des fréquences propres et 
modes propres du bâtiment et de sa réponse sis­
mique linéaire, 
>- calcul de la réponse non linéaire en temps 
pour plusieurs niveaux de séismes. 

Nous ne considérerons ici que les deux pre­
miers points ; l'analyse dynamique non 

BULLETIN DES LABORATOIRES DES PONTS ET CHAUSSÉES - 219 - JANVIEI R-FÉVRIER 1999 - RÉF. 4244 - PP. 53-67 55 



linéaire sera présentée dans l'article d 'Aoua-
meur et al. (à paraître). Dans le projet 
C A M U S , la structure considérée est une 
maquette de bâtiment à l 'échelle 1/3 compor­
tant six planchers et d'une hauteur totale de 
5,1 m. Elle est constituée de murs en béton 
faiblement armé couramment utilisé dans la 
conception des bât iments en France. Le com­
portement sismique de telles structures est 
réputé très bon. Les règlements parasismiques 
ne tiennent en général pas compte de cette pro­
priété. A f i n d'analyser les performances sismi-
ques de la maquette C A M U S , la modélisation 
numérique de la structure et le calcul de sa 
réponse sismique linéaire et non linéaire ont 
été réalisés ( C E A , 1997 ; C E A , 1998 ; 
Mazars, 1998). L'analyse linéaire réalisée par 
l 'équipe du L C P C (Semblât et al., 1998) est 
présentée dans cet article. Cette étude numé­
rique préliminaire ne permet pas de compa­
raison précise avec les réponses mesurées 
expérimentalement (fortement non linéaires). 
Ces comparaisons seront effectuées dans le 
second article (Aouameur et ai, à paraître). 

Description de la structure CAMUS 

Description générale 

L a structure C A M U S comporte essentiellement 
deux types d 'é léments structuraux : 

>- les murs, planchers et fondations en béton 
armé, 
v- le système de contreventement constitué de 
poutres en acier. 

Sur chacun des planchers supérieurs (fig. 2), elle 
comprend en outre des surcharges permettant de 
respecter les conditions de similitude sur la masse 
volumique (cf. « Expérimentat ions dynamiques 
sur table vibrante »). L a figure 3 donne un schéma 
de la structure C A M U S (échelle 1* = 7/3 : sa hau­
teur totale est de 5,1 m, les planchers sont espacés 
de 0,9 m (épaisseur 0,21 m), l 'épaisseur des murs 
est de 0,06 m et celle des fondations de 0,10 m. 
Les données expérimentales de départ concernent 
les premières fréquences propres de la struc­
ture : 7.24 Hz pour le premier mode propre 
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(flexion dans le plan des murs), 20 Hz pour le 
premier mode propre vertical et 33 Hz pour le 
deuxième mode propre de flexion ( C E A , 1997). 

Principaux éléments structuraux 

La masse totale de la structure est de 36,310 t. 
Les différents éléments structuraux en béton 
armé sont les suivants : 
• les murs latéraux : 

- p : 2 400 kg/m 3 , 
- E : 28 000 M P a , 
- v : 0,2, 
- e : 0,06 m (constante) ; 

• la fondation (et son système de fixation) : 

- p : 5 600 kg/m 3 . 
- E : 28 000 M P a , 
- v : 0,2, 
- e : 0,10 m ; 

• les planchers supérieurs qui comportent des 
masses additionnelles : 

- p : 9 525 kg/m 3 , 
- E : 28 000 M P a , 
- v : 0,2, 
- e : 0,21 m ; 

• le plancher inférieur : 

- p : 2 400 kg/m 3 , 
- E : 28 000 M P a , 
- v : 0,2, 
- e : 0,21 m. 

où : 
^ p : masse volumique, 

E : module d 'Young, 
^ v : coefficient de Poisson, 
>- e : épaisseur. 

Il est tenu compte de la présence des masses 
additionnelles (fig. 4) qui n'interviennent pas 
dans la résistance des planchers, mais modifient 
leur masse volumique. La masse volumique d'un 
plancher courant est alors déterminée d 'après la 
masse du plancher lui-même à laquelle sont 
ajoutées les masses additionnelles fixées 
au-dessus et en dessous de chaque plancher 
(cf. fig. 2 et 4 ; Semblât et al., 1998). Ces 
masses additionnelles permettent de respecter le 
rapport de similitude sur la masse volumique, 
soit p = 1/1" = 3 (cf. « Expérimentat ions dyna­
miques sur table vibrante »). Elles sont soit en 
béton, soit en acier et leurs masses respectives 
sont les suivantes : 

M A = 0,628 t (quatre masses en acier), 
>- M B = 0,240 t (deux masses en béton au-dessus), 
>- M c = 0,288 t (six masses en béton en dessous). 

Le plancher inférieur est dépourvu de masses 
additionnelles. 

Fig. 4 - Plancher courant avec ses masses additionnelles. 

Le système de contreventement est constitué de 
poutres inclinées en acier (cf. fig. 8) dont les 
caractéristiques sont les suivantes : 
p = 8 370 kg/m 3 , E = 210 000 M P a , v = 0,3. 
L'aire de la section de toutes les poutres est la 
m ê m e et vaut S = 1,06.KL 2 m 2 , les sections r é ­
duites sont SI = 2,4.10" 4 m 2 , S 2 =8,61.10" 4 m 2 . 
Le moment d'inertie de torsion vaut 
V n = 1,07-lfr'1 m 4 , les inerties de flexion autour 
des axes X et Y sont respectivement 
V l 2 = 1,126.10^ m 4 et V u = 3,923.10-' m 4 . 

Modélisation numérique en dynamique 
avec C É S A R - L C P C 

Les recherches sur les méthodes numériques et 
les éléments finis ont démarre au L C P C à la fin 
des années 1960. C É S A R - L C P C est un code de 
calcul général basé sur la méthode des éléments 
finis développé au L C P C depuis 1983 afin de 
modéliser le comportement d'ouvrages de génie 
c iv i l (Humbert, 1989). Il comporte une grande 
variété de lois de comportement permettant de 
simuler de nombreux types de problèmes ( l i ­
néaire, non linéaire, bidimensionnel, tridimen­
sionnel, statique, dynamique). Les différents 
champs d'investigation de C É S A R - L C P C sont les 
suivants : géotechnique, calcul de structure, 
hydrogéologie, mécanique des chaussées, pro­
blèmes couplés, thermique, acoustique, sismi-
que, etc. 

En dynamique, i l est possible de résoudre par la 
méthode des éléments finis les problèmes géné­
raux de dynamique des structures (Grégeois et 
al., 1992 ; Aouameur, 1998), d'analyser les phé­
nomènes de propagation d'ondes (Semblât, 1997 
et 1998) et les problèmes d 'aérodynamique pour 
les ouvrages d'art (Patron, 1998). C É S A R - L C P C 
comporte également un module basé sur la 
méthode des éléments de frontière qui permet de 
résoudre les problèmes d'effets de site et d'inter­
action sol-structure (Dangla, 1989 ; Semblât et 
ai, 1999). 
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Le développement récent dans C É S A R d'algo­
rithmes et de types d 'é léments spécifiques 
(poutre multifibre, coque multicouche) permet 
de réaliser des calculs dynamiques non linéaires 
et d'analyser ainsi les problèmes de chocs et de 
dynamique rapide (Sercombe, 1997), la réponse 
sismique des structures (Ulm, 1993 et 1994 ; 
Aouameur, 1998), etc. 

Détermination des fréquences 
et des modes propres 

Modes propres réels des systèmes 
à amortissement classique 

Les équations du mouvement d'un système à N 
degrés de liberté s 'écrivent classiquement 
(Clough, 1993 ; Imbert, 1979) : 

M x + C x + K x = F(t) 

où M , C et K sont respectivement les matrices de 
masse, d'amortissement et de rigidité. La solu­
tion générale peut s'obtenir à partir de l 'é tude 
des vibrations libres : 

M x + C x + K x = 0 0) 
Les N solutions propres du système (1) sont 
appelés « modes ». Dans le cas général, ces N 
modes sont complexes (Bisch et al., 1999). Pour 
des structures sans amortissement ou présentant 
un amortissement classique (amortissement de 
Rayleigh, par exemple), les modes sont réels et 
sont solutions du système : 

M x + K x = 0 

Les solutions sont du type x(t) = X . e J 0 ) t , d 'où les 
équations modales : 

co M x = K x (2) 

Le système (2) possède N valeurs propres réel­
les : X{ = to,2, X2 = to,2, ... , X.N = co,2 auxquelles 
correspondent les modes propres (ou vecteurs 
propres) du système sans amortissement soient 
x " \ x(2>, x ( N ) . 

Méthodes de détermination des valeurs propres 
Dans C É S A R - L C P C , la détermination des valeurs 
propres et vecteurs propres réels du système (2) 
se fait à l'aide du module M O D E . L a méthode 
de résolution utilisée est la méthode du sous-es­
pace, qui combine les méthodes d' i tération 
inverse et de Ritz (Fezans, 1997). 

Méthode de Ritz 

La méthode de Ritz permet de réduire la dimen­
sion du problème aux valeurs propres à résoudre. 
Elle utilise, pour cela, le principe de stationnaritô 

du quotient de Rayleigh (au voisinage de tout 
vecteur propre). Ce quotient est défini pour tout 
vecteur y de la façon suivante (Imbert, 1979) : 

T 

y T M y 

Méthode de la puissance inverse 

Elle permet de calculer la plus petite valeur 
propre (et le vecteur propre associé) et consiste à 
itérer sur un vecteur y défini à l 'é tape i de la 
façon suivante : 

K . y ; M.v , 

en partant d'un vecteur y ( ) défini sur la base des 

vecteurs propres x ( i ) sous la forme : 

y» = S Pi x<-
j = i 

„0') 

L'expression du vecteur yi sur la base des vec­
teurs propres est alors la suivante : 

1 
P , x ( l ) + I P i * ' 

(j) 

Lorsque le nombre d' i térat ions devient grand, les 
itérés successifs deviennent colinéaires au vec­

teur propre x 

1 

(0 

(3,x ( l > et de plus 
y i + i i 

Modes propres 
de ia structure CAMUS 

Modèle bidimensionnel de la structure 

En considérant que la structure présente un 
amortissement classique et qu ' i l n 'y a pas 
d'amortissements localisés, la détermination des 
caractéristiques modales se fait par l ' in termé­
diaire des modes propres réels. Un premier 
modèle bidimensionnel est élaboré afin de réa­
liser une analyse simple et rapide des fréquences 
et modes propres de la structure. Le calcul est 
effectué en contraintes planes et les conditions 
aux limites à la base de la structure imposent des 
déplacements horizontaux et verticaux nuls en 
tout point. 

Les murs et les fondations sont modél isés par 
des éléments finis volumiques d 'épaisseurs res­
pectives e, = 0,12 m et e 2 = 0,20 m (soit deux 
fois l 'épaisseur nominale). Les planchers en 
béton sont modélisés à l'aide d 'é léments de 
poutre ayant les caractéristiques suivantes : 
p = 9 525 kg/m 3 (avec masses additionnelles, 

58 BULLETIN DES LABORATOIRES DES PONTS ET CHAUSSÉES - 219 - JANVIER-FÉVRIER 1999 - REF 4244 - pp 53-67 



cf. « Description de la structure C A M U S »), 
E = 28 000 M P a , v = 0.2, aire de la section 
S = 0.357 m 2 , section réduite S | | = 0,2975 m 2 , 
moment d'inertie de torsion V n = 0,0013 m 4 , 
excentrement du centre de gravité de la section 
Y G = 0,03 m. L'excentrement est calculé 
d 'après la position des masses additionnelles, 
mais i l modifie peu les fréquences propres de la 
structure (Semblât et ai, 1998). L a masse volu-
mique du plancher inférieur vaut 
p = 2 400 kg/m'' (pas de masses additionnelles) 
et son excentrement est nul. 

Le premier mode propre de la structure est 
représenté sur la figure 5 et correspond à une 
fréquence propre de 8,7 Hz . Cette première 
fréquence propre est nettement plus élevée que 
celle donnée par l 'expérience (7,24 Hz). Le 
modèle bidimensionnel considéré est donc plus 
rigide que la structure réelle. En outre, dans les 
premiers modes propres obtenus avec ce 
modèle, il n 'apparaî t pas de mode propre ver­
tical comme indiqué par l 'expérience ( C E A , 
1997). 

A f i n de rendre le modèle plus réaliste, la table 
vibrante et ses supports ont également été 
modélisés. Le modèle complet ainsi considéré 
devrait être plus souple que le précédent et 
conduire à des fréquences propres plus proches 
de la réalité. En outre, la masse totale de la 
table vibrante est d'environ 25 t, ce qui n'est 
pas négligeable eu égard à la masse de la 
structure. 

ière fréquence 
e f 1 = 8.7 Hz 

JESAR 
UfC 

Fig. 5 - Premier mode propre 
de la structure bidimensionnelle. 

Modèle bidimensionnel complet 

Description du modèle 

Comme le montre la figure 6, le modèle bidi­
mensionnel complet comprend la structure telle 
que décrite précédemment , la table vibrante et 
ses supports (ressorts localisés). La table 
vibrante, supposée rigide, a été incluse dans le 
modèle en tenant compte de sa masse et de sa 
géométrie soient : masse volumique 
p = 615 kg/m 3 (calculée d 'après la masse de la 
table, m, = 25 t, supposée uniformément répar­
tie), épaisseur e = 6 m (pour le calcul en 
contraintes planes, c 'est-à-dire la « profondeur » 
de la table dans la direction perpendiculaire au 
modèle) . Une poutre très rigide est fixée à la 
table afin de relier celle-ci aux supports (res­
sorts verticaux) excentrés par rapport aux extré­
mités de la table. 

Les ressorts verticaux fixés aux extrémités de 
cette poutre ont une rigidité K = 4.10 x N /m 
( C E A , 1997). L a rigidité ponctuelle fixée au 
milieu de la poutre représente deux ressorts 
situés à l'avant et à l 'arrière de la table et a donc 
une rigidité deux fois plus grande soit 
K ' = 2 K = 8.10* N /m. Dans les simulations 
numériques, plusieurs valeurs de K ont été util i­
sées afin d'analyser l 'évolution des fréquences 
propres. 

Les éléments employés dans C É S A R afin de 
modéliser ces ressorts verticaux sont des élé­
ments spéciaux appelés également rigidités 
ponctuelles ( L C P C , 1997). Ils permettent de 
donner de manière explicite des matrices de rigi­
dité (ou de masse ou d'amortissement) élémen­
taires. Les coefficients des matrices élémentaires 
sont donnes explicitement et ces éléments spé­
ciaux peuvent soit être connectés à une base 
rigide, soit relier deux nœuds distincts. Il est 
ainsi possible de modéliser des rigidités ou des 
amortisseurs ponctuels ou encore des masses 
localisées. 

Modes et fréquences propres 

Pour le modèle bidimensionnel complet, la 
condition aux limites concerne le centre de gra­
vité de la table : il est fixé dans la direction 
horizontale afin d 'é l iminer les mouvements de 
translation de corps rigide (les mouvements 
verticaux sont limités par les rigidités supports 
de la table vibrante). Le calcul est basé comme 
précédemment sur l 'hypothèse de contraintes 
planes. Les trois premiers modes propres du 
modèle bidimensionnel complet sont donnés 
sur la figure 7. 
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Fig. 6 -
Maillage du modèle 
bidimensionnel complet 
incluant la table vibrante. 
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L'intégration de la table vibrante et de ses sup­
ports (rigidités ponctuelles) dans le modèle 
permet de rendre compte des mouvements de 
rotation de l'ensemble table/structure pour les 
modes 1 et 3. Il est également possible d'ac­
céder au deuxième mode propre (vertical), qui 
est dû à la souplesse des supports de la table et 
qui ne peut pas être obtenu avec le premier 
modèle (structure seule). L a première fréquence 
propre est plus faible que pour la structure 
bidimensionnelle seule, puisqu'elle vaut 
7,93 Hz . Elle reste toutefois encore assez éloi­
gnée de la fréquence donnée expérimentale­
ment (7,24 Hz). Le premier mode propre est 
un mode de flexion. Le deuxième mode est un 
mode de vibration verticale. Le troisième mode 
est le deuxième mode de flexion. Comme l ' i n ­
dique la figure 7, les mouvements de la table 
vibrante sont tout à fait significatifs et ont un 
effet non négligeable sur la forme des modes 
propres. Il est donc nécessaire d ' intégrer la 
table vibrante et ses supports dans le modèle. 

Le tableau I donne, pour différentes valeurs de 
rigidité K , les fréquences propres et les pour­
centages d'erreur pour le modèle bidimen-
sionnel complet. Ce modèle complet s 'avère 
moins rigide que le premier modèle puisque les 
supports de la table vibrante induisent une cer­
taine souplesse (pas de conditions aux limites 
rigides). Compte tenu de sa masse, la contribu­
tion de la table vibrante à la répartition totale 
des masses doit, par ailleurs, être assez impor­
tante et modifier de façon sensible les paramè­
tres modaux. 

En tenant compte des incertitudes sur la valeur 
de K , les différentes valeurs choisies condui­
sent à des fréquences propres plus faibles 
qu'avec le premier modèle. Ces fréquences se 
rapprochent des valeurs déterminées expéri­
mentalement (tab. I). Pour l'ensemble des trois 
premières fréquences propres, les pourcentages 
d'erreurs par rapport aux valeurs expérimen­
tales obtenus pour K = 3.10 8 N / m sont faibles 
(respectivement 7, 2 et 2,4 %). C'est donc 

cette valeur de K qui sera retenue dans la suite. 
Pour K = 2,5.10 8 N / m , les pourcentages sont 
légèrement plus faibles, mais cette valeur de 
rigidité des supports de la table diffère très for­
tement de la valeur fournie pour le concours de 
prévisions C A M U S ( C E A , 1997). 

Modèle tridimensionnel complet 

Description du modèle 

En trois dimensions, la structure et la table sont 
prises avec les mêmes caractéristiques que pour 
le modèle bidimensionnel. Dans le cas tridimen­
sionnel, les murs, la fondation et les planchers 
sont représentés par des éléments de coques (au 
lieu d 'é léments volumiques bidimensionnels 
pour les deux premiers et d 'é léments de poutre 
pour les deux derniers). Comme en dimension 2, 
la masse volumique des planchers supérieurs est 
calculée en tenant compte de la contribution des 
masses additionnelles (Semblât et ai, 1998). 

La table est modélisée à l'aide d 'é léments volu­
miques et sa masse est supposée répartie de 
façon uniforme dans son volume. Le système de 
contreventement est représenté avec des élé­
ments de poutre tridimensionnels (au lieu de 
poutres bidimensionnelles). Les supports de la 
table vibrante sont modélisés par des éléments 
spéciaux ponctuels tridimensionnels définis de la 
même manière qu'en dimension 2 (seul le 
nombre de termes de la matrice élémentaire 
change). Le maillage du modèle tridimensionnel 
complet est représenté sur la figure 8. 

Modes et fréquences propres 

L a figure 7 montre les premier, deuxième et 
troisième modes propres obtenus avec le modèle 
tridimensionnel complet (structure + table 
vibrante). Les modes sont du même type qu'en 
dimension 2 : dans l'ordre, flexion dans le plan 
des murs, mode vertical puis deuxième mode de 
flexion. 

T A B L E A U I 
Fréquences propres pour différentes valeurs de K (modèle bidimensionnel complet) 

Valeur de K 
(N/m) 

Fréquence propre 
(Hz) 

Pourcentage d'erreur 
% Valeur de K 

(N/m) 
f, f2 f3 f, f2 

4.10 8 7,93 22,87 35,17 9,5 14,35 6,5 

3.10 8 7,75 20,43 33,82 7 2 2,4 

2,5.10 e 7,61 18,95 32,84 5 5,1 0,5 
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Fig. 8 -
Maillage du modèle 
trimensionnel avec la table 
vibrante. 

TABLEAU II 
Fréquences propres pour différentes valeurs de K (modèle tridimensionnel complet) 

Valeur de K 
(Nim) 

Fréquence propre 
(Hz) 

Pourcentage d'erreur 
% Valeur de K 

(Nim) 
fi u f3 

f, f2 «3 

4.10 8 7,81 21,69 34,28 7,8 8,4 3,8 

3.10 8 7,65 19,58 33,25 5,6 2,1 0,07 

2,5.10" 7,52 18,26 32,40 3,8 8,7 1,8 

Dans le calcul des modes et fréquences propres 
tridimensionnels, plusieurs valeurs de rigidité K 
ont également été considérées. Les résultats cor­
respondants à ces différentes valeurs sont donnés 
dans le tableau IL 

Les résultats numériques obtenus sont satisfai­
sants et sont plus proches des valeurs expérimen­
tales que dans le cas bidimensionnel (tableau II). 
Pour la valeur de K retenue ( K = 3.10 8 N/m), 
les différences entre valeurs calculées et valeurs 

mesurées sont faibles et valent respectivement 
5,6, 2,1 et 0,07 % pour les trois premières fré­
quences propres. Ces valeurs sont inférieures aux 
différences généralement observées entre modèle 
réduit et structure réelle (Buland, 1995). 

Ces résultats étant tout à fait satisfaisants, c'est 
ce modèle complet (bidimensionnel et tridimen­
sionnel) qui sera utilisé dans la suite pour la 
détermination de la réponse sismique du bâti­
ment. L a valeur de la rigidité des supports de la 
table sera donc prise égale à 3.10K N /m . 
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Réponse linéaire 
par superposition modale 

Chargement sismique et application 

Accélérogrammes synthétiques 

Les chargements sismiques appliqués correspon­
dent à trois signaux d'accélération synthétiques 
différents donnés en g (accélération de la pesan­
teur) : CAMUS02, CAMUS 17 et CAMUS 19. Ces 
signaux sont représentés sur la figure 9 et donnent 
l'accélération horizontale appliquée à la table 
vibrante. Le chargement de la structure est équiva­
lent à un mouvement de base rigide imposé. 

T e m p s (s) 

Fig. 9 - Signaux d'accélération pour les calculs linéaires 
et non linéaires (en g •>). 

L'accélérogramme CAMUS02 présente une 
amplitude maximale de 0,24 g, CAMUSI7 un 
maximum de 0,49 g et CAMUS 19 0,71 g. 
L'application d'un chargement correspondant à 
chacun des trois accélérogrammes est décrite 

dans la suite. Le pas de temps utilisé dans le 
calcul est At = 0,01 s. La figure 10 donne le 
spectre de pseudo-accélération du signal 
CAMUS02 en fonction de la période. 

0,8 

0,1 1 ' ' 1 ' ' ' ' ' • 1 

0 0,2 0.4 0,6 0,8 1 

Période (s) 

Fig. 10 -Spectre de réponse CAMUS02 
(pseudo-accélération en « g »). 

Mouvement imposé à la base 

Comme le bâtiment est de faible hauteur, un 
mouvement d'accélération appliqué à sa base 
provoque à la fois un mouvement d'ensemble de 
la structure et un mouvement relatif par rapport à 
cette base. Ceci n'est pas le cas pour les struc­
tures de grande hauteur pour lesquelles il peut ne 
pas y avoir réellement de mouvement de corps 
rigide (Bisch et al., 1999). 

Si l'on note x = x s + xc; le déplacement total de 
la structure lié à un mouvement imposé xG en 
son centre de gravité, l'équation du mouvement 
relatif x s du système table + bâtiment peut 
s'écrire de la manière suivante (Clough et 
Penzien, 1993) : 

M(x s + xG) + Cx s + K x s = F(t) = 0 

Seule les forces d'inertie s'expriment en fonction 
des déplacements globaux de la structure. 
L'équation du mouvement s'exprime alors direc­
tement en fonction de l'accélération imposée au 
centre de gravité du système sous la forme sui­
vante : 

Mx s + Cx s + Kx s = " MxC i 

Pour appliquer ce type de chargement à la struc­
ture, les forces d'inertie ont donc été calculées 
d'après les signaux d'accélération synthétiques et 
appliquées en tout point de la structure. Le char­
gement considéré dans la modélisation numé­
rique est ainsi un chargement volumique réparti 
dans l'ensemble de la structure et appliqué sui­
vant la direction d'accélération (horizontale). 
Comme le centre de gravité G de la table est fixe 
dans le plan horizontal, les mouvements de la 
structure sont donc des déplacements relatifs 
définis par rapport à un repère lié au point G. 
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Contribution de chaque mode 
à la réponse dynamique 

Lorsque la structure est soumise à un déplace­
ment statique unitaire de sa base, en notant ô 
le vecteur déplacement de tous les nœuds de la 
structure, le facteur de participation modale p ; 

représente la contribution du mode i à la 
réponse et i l est défini par (Clough et Penzien, 
1993) : 

T x

( , ) Mô 

T v

( i ) Mx® 
et m.; = pr­

ou x w est le vecteur propre du mode i , M la 
matrice de masse et m, la masse effective du 
mode i . Dans cette expression, le dénominateur 
est généralement égal à l 'unité (normalisation de 
la matrice modale par rapport à la matrice de 
masse). 

Les pourcentages de masse effective sont cal­
culés en divisant les masses effectives de chaque 
mode par la masse totale de la structure. Ils 
caractérisent la contribution de chacun des 
modes à la réponse de la structure. Lorsque la 
somme des pourcentages de masse effective est 
insuffisante, i l est possible d'utiliser la « mé­
thode du mode résiduel » (Bisch et al., 1999 ; 
Imbert, 1979) en affectant la masse manquante 
au dernier mode retenu. 

Réponse dynamique linéaire 
pour le modèle bidimensionnel complet 

Détermination de la réponse par superposition 
modale 

L a détermination de la réponse dynamique 
bidimensionnelle est réalisée à l'aide d'une 
méthode de superposition modale (module 
S U M O de CÉSAR, Brioist, 1997). Le modèle 
considéré est le modèle complet présenté sur la 
figure 6 et dont les modes propres sont donnés 
sur la figure 7. Dans le calcul, la valeur de K 
retenue est K = 3.10 8 N / m et la sollicitation 
est calculée d 'après les signaux d 'accélérat ion 
synthétiques de la figure 9. Le pas de temps 
utilisé dans le calcul est At = 0,01 s. L a valeur 
de K semble avoir une importance sensible sur 
la réponse dynamique de la structure puisque 
les courbes obtenues pour différentes valeurs 
de K ne coïncident pas (Semblât et al., 1998). 
Un effet de déphasage important des pics et 
d'amplification plus ou moins grande du dépla­
cement apparaît. L a réponse dynamique linéaire 
de la structure semble donc très sensible à la 
valeur de K , c 'est-à-dire à de faibles variations 
des fréquences propres. 

0,02 

0,01 

£ -0,01 
•<D 
Q 

-0,02 

Fig. 11 - Déplacement horizontal au sommet du bâtiment 
(CAMUS02) pour K = 3.10e N/m. 

0,010 

Fig. 12 - Déplacement horizontal au sommet du bâtiment 
(CAMUSI7) pour K = 3.10e N/m. 

0,04 

S 0,02 1 

-0,02 

-0,04 

Fig. 13 - Déplacement horizontal au sommet du bâtiment 
(CAMUS19) pour K = 3.10s N/m. 
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Les courbes des figures 11, 12 et 13 donnent 
le déplacement horizontal au sommet de la 
structure calculé pour les trois sollicitations sis-
miques ( C A M U S 0 2 , 17 et 19). L'amplitude du 
déplacement est d'ordre centimétrique puis­
qu'elle varie de 0,5 cm pour C A M U S 17 à 
presque 4 cm pour C A M U S 19. Sur les courbes 
de réponse, la période d'oscillation observée 
correspond à la première période propre de 
l'ensemble structure/table soit T, = 1/f, = 
0,13 s (cf. tab. I). 

Pourcentages de masse effective pour le modèle 
bidimensionnel complet 

Afin de déterminer la contribution de chaque 
mode à la réponse dynamique de la structure, 
la masse modale effective (cf. « Contribution 
de chaque mode à la réponse dynamique ») 
des 10 premiers modes de la structure 
C A M U S a été estimée dans le cas du modèle 
bidimensionnel complet. Le tableau III donne 
les pourcentages de masse effective corres­
pondant aux dix premières fréquences propres 
pour la sollicitation sismique C A M U S 1 9 et 
avec une rigidité des supports de la table 
K = 3.10 s N /m. 

T A B L E A U III 
Fréquences propres et pourcentages de masse 

effective (modèle bidimensionnel) 

Mode 
numéro 

Fréquence propre 
(Hz) 

Pourcentage 
de masse effective 

(%) 

1 7,75 41,59 

2 20,43 0 

3 33,82 10,18 

4 58,42 0,272 

5 63,62 0 

6 90,53 2,791 

7 129,71 0 

8 131,17 0,824 

9 164,13 0,444 

10 174,94 0,027 

Comme indiqué dans le tableau III, le pourcen­
tage de masse effective est élevé pour le premier 
et le troisième mode (respectivement 41,6 et 
10,2 %). Pour tous les autres modes, les pour­
centages de masse effective sont très faibles. La 
contribution de ces deux modes à la réponse 
dynamique de la structure est donc largement 
prépondérante. Celle des autres modes est négli­
geable (Semblât et ai, 1998). 

Réponse dynamique linéaire pour le modèle 
tridimensionnel complet 
La détermination de la réponse dynamique tridi­
mensionnelle est réalisée à partir du modèle com­
plet présenté sur la figure 8. L a réponse diffère 
légèrement de la réponse obtenue en dimension 2 
puisque les fréquences propres calculées avec les 
deux modèles sont sensiblement différentes. 
L'amplitude maximale de déplacement reste tou­
tefois du même ordre qu'en dimension 2. Les 
pourcentages de masse effective sont également 
équivalents en dimension 3 avec une nette prédo­
minance des modes 1 et 3 (Semblât et ai, 1998). 
Outre l 'améliorat ion des valeurs de fréquences 
propres estimées (plus proches de celles données 
par l 'expérience), l ' intérêt du modèle tridimen­
sionnel est de permettre l'analyse de sollicitations 
sismiques d'orientation quelconque. 

La figure 14 donne la déformée du modèle tridi­
mensionnel pour le séisme C A M U S 0 2 à l'instant 
t = 11,71 s. D 'après cette figure, la déformation 
s 'opère presque exclusivement en flexion dans le 
plan des murs (structure symétrique sollicitée 
suivant une direction de son plan de symétrie). 
Les mouvements de la table vibrante sur ses sup­
ports ne sont pas négligeables par rapport aux 
mouvements de la structure. L' intégrat ion de la 
table vibrante dans le modèle est donc parfaite­
ment justifiée. 

Fig. 14 - Déformée du modèle tridimensionnel complet 
(CAMUS02. t = 11,71 s, K = 3.10e N/m). 

Conclusions 
Dans le cadre du projet C A M U S , la réponse sis­
mique d'un bâtiment a été déterminée sur une 
maquette grâce à des essais sur la table vibrante 
« Azalée » du C E A ( C E A , 1997). L a contribu-
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tion du L C P C à la modélisation numérique de ce 
problème a été réalisée à l'aide du progiciel de 
calcul par éléments finis C É S A R - L C P C . 

L a modélisat ion de la structure C A M U S et 
l'estimation numérique de ses caractéristiques 
modales ne peut se faire correctement en consi­
dérant la structure seule. Il est nécessaire d ' in­
tégrer dans le modèle la table vibrante ainsi 
que ses supports (sous forme de rigidités ponc­
tuelles). Les paramètres modaux des trois pre­
miers modes, déterminés à l'aide de 
C É S A R - L C P C , sont alors très sensiblement 
modifiés et coïncident bien avec les mesures 
expérimentales. 

L a détermination, par une méthode de superposi­
tion modale, de la réponse dynamique linéaire de 
l'ensemble structure + table vibrante met en évi­
dence la contribution de chacun des modes pro­
pres. L a contribution des premier et troisième 
modes (tous deux en flexion) est largement prédo­
minante. Les modèles ainsi proposés serviront de 
point de départ à l'analyse dynamique non linéaire 
présentée de façon détaillée dans l'article d 'Aoua-
meur et al. (à paraître). Les résultats obtenus par 
l'ensemble des participants au concours de prévi­
sion international ont été comparés par le C E A 
( C E A , 1998). Des résultats détaillés sont égale­
ment donnés par Ragueneau et Mazars (1998), 
Ragueneau (1999), Ile et al. (1998). 
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A B S T R A C T 

Earthquake performance of buildings (CAMUS project) 
I - Discretization of the structure and numerical modelling of linear response 

J . - F . S E M B L A T , A . A O U A M E U R , F . - J . U L M , H. MITANI 

This paper presents the C A M U S project (Conception et Ana lyse de M U r s sous Se i smes , 1997-1998) with reference 
to the L C P C ' s entry to the forecasting competition associated with this programme (digital modell ing of the se ismic 
response of a building) T h e experimental model of the building was tested on a vibrating table at the C E A in order to 
conduct an experimental analysis of its se ismic response. 

This first part of the study deals with the modell ing of the dynamic linear response of the structure (using 
C £ S A R - L C P C ) and analysis of the way the characterist ics of the model influence the modal parameters. Analys is of 
the intrinsic modes of vibration of the structure alone does not give the natural f requencies determined by experi­
ment. Two comprehensive models (one two-dimensional, the other three-dimensional) were then used to analyze 
the structure/vibrating table combination. The natural f requencies they output were lower and nearer to the observed 
frequencies. W e were then able to detect the intrinsic vertical mode of vibration, caused by the flexibility of the table 
supports. 

The dynamic linear response was determined using a modal superimposit ion technique and the contribution of each 
mode of vibration was analyzed (effective masses) . Part two of the paper will provide an account of the nonlinear 
dynamic analysis and the compar ison with experimental results. 
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