Comportement d’un batiment sous seisme

(projet CAMUS)

| - Discretisation de la structure et modeélisation
numerique de la reponse lineaire

RESUME

Dans cet article, le projet CAMUS (Concep-
tion et Analyse de MUrs sous Séismes,
1997-1998) est présenté a travers la contri-
bution du Laboratoire central des Ponts et
Chaussées (LCPC) au concours de prévision
lié a ce programme (modélisation numérique
de la réponse sismigue d'un batiment). La
magquette de ce batiment a été testée sur la
table vibrante du Commissariat a I'énergie
atomique (CEA) afin d’analyser expérimenta-
lement sa réponse sismique.

Ce premier article concerne la modélisation de
la réponse dynamique linéaire de la structure
(réalisée a l'aide de césar-LCPC) et I'analyse
de linfluence des caractéristiqgues du modele
sur les parameétres modaux. En effet, I'analyse
des modes propres de la structure seule ne
permet pas de retrouver les fréquences pro-
pres déterminées expérimentalement.
L'ensemble structure/table vibrante est alors
pris en compte dans deux modeles complets
(Pun bidimensionnel, 'autre tridimensionnel).
Les fréquences propres obtenues sont alors
plus faibles et approchent correctement les
valeurs réelles. Le mode propre vertical, dG ala
souplesse des supports de la tabie, peut alors
étre détecté.

La détermination de la réponse dynamique
linéaire est réalisée a i'aide d’'une méthode
de superposition modale et la contribution de
chacun des modes est analysée (masses
effectives). L'analyse dynamique non linéaire
et la comparaison avec les résultats expéri-
mentaux seront proposées dans un second
article (Aouameur et al., a paraitre).

MOTS CLES : Modele numérigue - sismique -

Eléments finis (méthode) - Vibration -
Modele (sauf math.) - Temps (durée} -
Ouvrage dart (gén.) - Batiment -

Comportement - Dynamique //table vibrante.
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Introduction

En génie parasismique, les expérimentations sur
modeles réduits présentent un grand intérét. Elles per-
mettent, en effet, d’analyser sur des dispositifs de
dimensions raisonnables des phénomeénes aussi variés
que la propagation des ondes sismiques (Semblat et
Luong, 1998). le comportement dynamique des struc-
tures (Buland, 1995) ou l'interaction sol-structure (Piti-
lakis et af., 1994).

Les expérimentations sismiques sur les batiments peu-
vent ainsi étre réaliséecs a échelle réduite sur table
vibrante. Tl est teutetois nécessaire de respecter certaines
regles, appelées lois de similitude, afin d° obtenir sur la
maquette les mémes niveaux de contrainte et d’accéléra-
tion que sur le batiment on vraie grandeur (cf. « Expéri-
mentations dynamiques swr table vibrante »).



Une premiére expérimentation de ce type s’est
déroulée entre 1990 et 1992 (projet CASSBA :
Conception et Analyse Sismique des Structures
en Béton Armé). L’objectif de ce projet était
d’étudier la réponse sismique d’un batiment a
murs porteurs de huit étages a 1’aide d’essais sur
table vibrante (Gantenbein et al., 1994).

Le projet CAMUS (Conception et Analyse de
MUrs sous Séismes) a ensuite vu le jour afin de
caractériser pleinement la réponse dynamique
non linéaire du méme type de batiment dans
d’autres conditions de chargement sismique
(CEA, 1997). Outre les expérimentations sur
modele réduit réalisées sur la table vibrante
« Azalée » du Commissariat 2 1"énergie ato-
mique (CEA) et le travail de simulation et d ana-
lyse de I’équipe CAMUS, un concours de prévi-
sions international a été proposé pour modéliser
la structure et analyser sa réponse a l'aide de
méthodes numériques. Onze équipes différentes
(Europe, Canada, Etats-Unis, Japon) ont parti-
cipé a ce concours de prévisions et ont présenté
leurs résultats lors de la XI° Conférence euro-
péenne de génie parasismique (CEA, 1998).

Expérimentations dynamiques
sur table vibrante

Lois de similitude pour les essais
sur table vibrante

Les essais sur modele réduit (centrifugeuse. table
vibrante, soufflerie, etc.) présentent un grand
intérét pratique et économique. Ils nécessitent,
toutefois, le respect de regles précises, appelées
lois de similitude. Ces lois permettent, par exem-
ple, de retrouver a échelle réduite les mémes
niveaux de contrainte qu’en grandeur réelle sur
I’ouvrage prototype. Le comportement du maté-
riau est alors similaire pour la maquette et le pro-
totype.

Pour les essais sur table vibrante, en notant / le
rapport de réduction sur les distances (I < 1) et
en considérant 1’équation dimensionnelle don-
nant la contrainte due aux forces de pesanteur
(Buland, 1995), la condition de similitude sur la
masse de la structure, soit m’, est la suivante :
c = T_g d’oit

[ g

oll ¢ et g sont les échelles de similitude sur la
contrainte et sur la pesanteur. Comme ces deux
échelles valent ['unité (méme contraintes et
méme forces de pesanteur sur la maquette qu’'en
grandeur réelle), 1’échelle de similitude sur la

:m = (')

masse vaut donc

Ceci donne la condition de similitude suivante
pour la masse volumique :

. m 1
= d’ou =
P r P /

Si I’échelle des distances est réduite d’un facteur
3 (I" = 1/3), il est donc nécessaire de multiplier
la masse volumique par un facteur 3. Il n’est pas
possible de modifier la masse volumique du
matériau, car celui-ci doit se comporter de la
méme maniére sur la maquette qu’en grandeur
réelle. Les structures utilisées pour les essais sur
table vibrante sont donc pourvues de masses
additionnelles permettant de respecter la condi-
tion de similitude sur la masse volumique
(cf. « Description de la structure CAMUS »). En
considérant maintenant la contrainte due a la sol-
licitation sismique (Buland, 1995), I’équation
aux dimensions obtenue s’écrit :

m'y

c =——— dou y=—=1 et t':\/l'

{ t
ol y ctt sont les échelles de similitude sur I'ac-
célération et sur le temps. En plus de la simili-
tude de contrainte (¢° = 1), il y a donc simili-
tude d’accélération (y = 1). Il faut, en revan-
che, respecter un rapport de similitude (/)" sur
le temps. Les signaux d’accélération utilisés
pour les essais sur table vibrante ont donc la
méme amplitude qu’en grandeur réelle, mais ils
doivent étre contractés dans le temps. Pour réa-
liser des essais dynamiques sur table vibrante, il
faut ainsi augmenter la masse volumique du
modele réduit d’un facteur 1// et contracter
["échelle des temps d’un facteur (1), Les fré-
quences de la maquette seront donc augmentées

de (1/0')" par rapport a la réalité. Le respect de
ces lois de similitude permet d’obtenir sur
magquette les mémes contraintes que pour la
structure réelle.

Le projet CASSBA

L’objectif de ce projet était d’étudier la réponse
sismique d’un batiment de huit niveaux, a murs
porteurs en béton faiblement armés et chainés.
Financé par le Ministére de la recherche, la FNB,
le CEA et Cogema, ce programme a été rcalisé
par le CEA, le GRECOQO, le CEBTP et un groupe
d’experts en génie parasismique.

Apreés définition d’un batiment type, une
magquette, a 1"échelle 1/3 sur les longueurs et 1/9
sur les masses, a été testée en étant simplement
posée sur la table vibrante « Azalée » du CEA
(Gantenbein, 1994). Plusieurs équipes francaises
ont réalisé des simulations numériques afin
d analyser les réponses linéaire et non linéaire de
la structure (Mazars, 1994). Le LCPC a participé
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Fig. 1 - Modes propres de la structure du projet CASSBA.

au projet CASSBA en analysant les caractéristi-
ques modales et la réponse dynamique linéairc
de la structure (Grégeois, 1992). La structure est
mod¢lisée en trois dimensions a 1'aide d’élé-
ments de volume (pour les longrines-semellcs),
d’éléments de coque (planchers, murs) et d’élé-
ments de poutre (contreventements métalliques).
La masse de la structure est de 91 t pour une
hauteur totale de 7.596 meires.

La figure | montre les trois premiers modes pro-
pres de la structure CASSBA déterminés a ’aide
du progiciel de calcul par éléments finis
CESAR-LCPC  (Humbert, 1989). Le maillage
comporte 1 997 nceuds et 1 823 éléments. Le
premier mode propre correspond a une flexion
transversale, le deuxiéme a une flexion longitu-
dinale ct le troisieme a la torsion. Les modes
d’ordre supérieur sont donnés dans I’article de
Grégeois et al. (1992).

Les expérimentations menées sur table vibrante
ont montré un soulevement dec la structure au
cours du mouvement de la table créant ainsi un
effet de filtre sur la sollicitation sismique. La
structure a donc été pcu endommagée et I’ana-
lyse dynamique non linéaire de sa réponse n'a
pas permis de caractériser plecinement les effets
irréversibles dus au chargement sismique. La
transmission des efforts aux murs porteurs est en
effet restée limitée du fait du balancement de la
structure (Gantenbein, 1994 ; Mazars, 1994,
1998).

Le projet CAMUS

En continuit¢é a CASSBA. la recherche
CAMUS s’inscrit dans le cadre de la maitrise
du risque sismique pour une technique de
construction qui utilise le concept de structure
a murs faiblement armés-chainés. Lc¢ projet est
soutenu par le CEA, la FNB, le Plan génie
civil et EDF, et les actecurs sont le CEA, le
réseau GEO, le CEBTP ct un groupe d’experts
en génie parasismisque. L’objectif de ces tra-
vaux cst d’étudier la réponse sismique d’un
batiment de plusicurs étages dans d’autres
conditions d’appui que CASSBA afin d’éviter
I’effet de filtre créé par le souléevement de la
maquette (Coin et al., 1998). La structure est
constituée de béton faiblement armé et est
ancrée a la table vibrante (CEA, 1997 ;
Mazars, 1998). La participation du LCPC au
concours de prévisions international du projet
CAMUS s’est faitc en s’appuyant sur le progi-
ciel de calcul par éléments finis CESAR-LCPC
(Humbert, 1989). Les différentes étapes de la
mod¢lisation sont les suivantes :

» discrétisation et modélisation des ditférents
éléments structuraux,

» détermination des fréquences propres et
modes propres du batiment ct de sa réponse sis-
mique linéaire,

= calcul de la réponsc non linéaire en tcmps
pour plusieurs niveaux de séismes.

Nous ne considérerons ici que les deux pre-
miers  points ; I’analyse dynamique non
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linéaire sera présentée dans I’article d’Aoua-
meur et al (a paraitre). Dans le projet
CAMUS, la structure considérée est une
maquette de batiment a I’échelle 1/3 compor-
tant six planchers et d’une hauteur totale de
5,1 m. Elle est constituée de murs en béton
faiblement armé couramment utilisé dans la
conception des batiments en France. Le com-
portement sismique de telles structures est
réputé trés bon. Les reglements parasismiques
ne tiennent en général pas compte de cette pro-
priété. Afin d’analyser les performances sismi-
ques de la maquette CAMUS, la modélisation
numérique de la structure et le calcul de sa
réponse sismique linéaire et non linéaire ont
été réalisés (CEA, 1997 ; CEA, 1998 ;
Mazars, 1998). L’analyse linéaire réalisée par
I’équipe du LCPC (Semblat et al,, 1998) est
présentée dans cet article. Cette étude numé-
rique préliminaire ne permet pas de compa-
raison précise avec les réponses mesurées
expérimentalement (fortement non linéaires).
Ces comparaisons seront effectuées dans le
second article (Aouameur et al.. a paraitre).

Description de la structure CAMUS

Description générale

La structure CAMUS comporte essentiellement
deux types d’éléments structuraux :

> les murs, planchers et fondations en béton
arme,

> le systeme de contreventement constitué de
poutres en acier.

Sur chacun des planchers supérieurs (fig. 2). elle
comprend en outre des surcharges permettant de
respecter les conditions de similitude sur la masse
volumique (cf. « Expérimentations dynamiques
sur table vibrante »). La figure 3 donne unschéma
de la structure CAMUS (échellel” = 7/3 :sa hau-
teur totale est de 5,1 m, les planchers sont espacés
de 0,9 m (épaisseur 0,21 m), I’épaisseur des murs
est de 0,06 m et celle des fondations de 0,10 m.
Les données expérimentales de départ concernent
les premicres fréquences propres de la struc-
ture : 7.24 Hz pour le premier mode propre

5,1m

1,7m

}021m

0,06m
< E

Fig. 2 - Structure CAMUS ancrée a la table vibrante
Azalée (photo CEA).

Fig. 3 - Schema de la structure
et de ses principaux éléments.
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(flexion dans le plan des murs), 20 Hz pour le
premier mode propre vertical et 33 Hz pour le
deuxieme mode propre de flexion (CEA, 1997).

Principaux éléments structuraux

La masse totale de la structure est de 36,310 t.
Les différents éléments structuraux en béton
armé sont les suivants :

e les murs latéraux :

—p : 2400 kg/m?,

— E : 28 000 MPa,

—-v 0,2,

—e : 0,06 m (constante) ;

la fondation (¢t son systeme de fixation) :
—p : 5600 kg/m?,

- E : 28 000 MPa,

—-v : 0,2,

—¢ : 0,10 m ;

e les planchers supérieurs qui comportent des
masses additionnelles :

—p : 9525 kg/m’,

— E : 28000 MPa,

—-v : 0,2,

—¢ 0,21 m ;

e le plancher inféricur :

—p : 2400 kg/m?,
—E : 28 000 MPa,

-v : 0,2,

—¢ : 0,21 m.

ou

~— p : masse volumique,

~— E : module d”Young,

~ V : coefficient de Poisson,

€paisseur.

-

Il est tenu compte de la présence des masses
additionnelles (fig. 4) qui n’interviennent pas
dans la résistance des planchers, mais modifient
leur masse volumique. La masse volumique d’un
plancher courant est alors déterminée d’apres la
masse du plancher lui-méme a laquelle sont
ajoutées les masses additionnelles fixées
au-dessus et en dessous de chaque plancher
(cf. fig. 2 et 4 ; Semblat et al, 1998). Ces
masses additionnelles permettent de respecter le
rapport de similitude sur la masse volumique.
soit p- = 1/[' = 3 (c¢f. « Expérimentations dyna-
miques sur table vibrante »). Elles sont soit en
béton, soit en acier ¢t leurs masscs respectives
sont les suivantes :

~ M, =0,628 t (quatre masses cn acier),
~ My = 0,240 t (deux masses en béton au-dessus),
— M = 0,288 t (six masses en béton en dessous).

Le plancher inférieur est dépourvu de masses
additionnelles.
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Plancher courant

Fig. 4 - Plancher courant avec ses masses additionnelles.

Le systeme de contreventement est constitué de
poutres inclinées en acier (¢f. fig. 8) dont les
caractéristiques sont les suivantes :
p = 8370 kg/m’, E = 210 000 MPa, v = 0.,3.
L’aire de la section de toutes les poutres est la
mémeetvautS=1,06.107 m>, les sections ré-
duites sont S1=2.4.10" m*,S2 =8,61.10™" m™.
Le moment d’inertiec de torsion vaut
V,,=1,07.10" m", les inerties de flexion autour
des axes X et Y sont respectivement
V,=1126.10" m* et V;=3,923.107 m".

Modélisation numérique en dynamique
avec CESAR-LCPC

Les recherches sur les méthodes numériques et
les éléments finis ont démarré au LCPC a la fin
des années 1960. CESAR-LCPC cst un code de
calcul général basé sur la méthode des éléments
finis développé au LCPC depuis 1983 afin de
modéliser le comportement d’ouvrages de génie
civil (Humbert, 1989). 1l comporte une grande
vari¢té de lois de comportement permettant de
simuler de nombreux types de problemes (li-
néaire, non linéaire, bidimensionnel, tridimen-
sionnel, statique. dynamique). Les ditférents
champs d’investigation de CESAR-LCPC sont les
suivants : géotechnique, calcul de structure,
hydrogéologie, mécanique des chaussées, pro-
blemes couplés, thermique, acoustique, sismi-
que, etc.

En dynamique, il est possible de résoudre par la
méthode des éléments finis les problemes géné-
raux de dynamique des structures (Grégeois et
al., 1992 ; Aouameur, 1998), d analyser les phé-
nomenes de propagation d’ondes (Semblat, 1997
et 1998) et les problemes d’aérodynamique pour
les ouvrages d’art (Patron, 1998). CESAR-LCPC
comporte également un module basé sur la
méthode des éléments de frontiere qui permet de
résoudre les problémes d’effets de site et d’inter-
action sol-structure (Dangla, 1989 ; Semblat et
al., 1999).



Le développement récent dans CESAR d’algo-
rithmes et de types d’éléments spécifiques
(poutre multifibre, coque multicouche) permet
de réaliser des calculs dynamiques non linéaires
et d’analyser ainsi les problémes de chocs et de
dynamique rapide (Sercombe, 1997), la réponse
sismique des structures (Ulm, 1993 et 1994 ;
Aouameur, 1998), etc.

Détermination des fréquences
et des modes propres

Modes propres réels des systémes
a amortissement classique

Les équations du mouvement d’un systeme a N
degrés de liberté s’écrivent classiquement
(Clough, 1993 ; Imbert, 1979) :

Mx + Cx + Kx = F(t)

ou M, C et K sont respectivement les matrices de
masse, d’amortissement et de rigidité. La solu-
tion générale peut s’obtenir a partir de 1’étude
des vibrations libres :

Mx + Cx + Kx = 0 (1)

Les N solutions propres du systeme (1) sont
appelés « modes ». Dans le cas général, ces N
modes sont complexes (Bisch et al., 1999). Pour
des structures sans amortissement ou présentant
un amortissement classique (amortissement de
Rayleigh, par exemple), les modes sont réels et
sont solutions du systeme :

Mx + Kx =0

Les solutions sont du type x(t) = X.e', d’ou les
équations modales :

®® Mx = Kx (2)

Le systeme (2) posséde N valeurs propres réel-
les : A, =} A, =07, ... , Ay = oy auxquelles
correspondent les modes propres (ou vecteurs
propres) du syst¢me sans amortissement soient
xx@ L x™

Méthodes de détermination des valeurs propres

Dans CESAR-LCPC, la détermination des valeurs
propres et vecteurs propres réels du systeme (2)
se fait a I'aide du module MODE. La méthode
de résolution utilisée est la méthode du sous-es-
pace, qui combine les méthodes d’itération
inverse et de Ritz (Fezans, 1997).

Méthode de Ritz

La méthode de Ritz permet de réduire la dimen-
sion du probléeme aux valeurs propres a résoudre.
Elle utilise, pour cela, le principe de stationnarité

du quotient de Rayleigh (au voisinage de tout
vecteur propre). Ce quotient est défini pour tout
vecteur y de la facon suivante (Imbert, 1979) :

T
y Ky
Rly] = 5=
y My

Méthode de la puissance inverse

Elle permet de calculer la plus petite valeur
propre (et le vecteur propre associé) et consiste a
itérer sur un vecteur y défini a I'étape i de la
facon suivante :

Ky = My,

en partant d’un vecteur y, défini sur la base des

vecteurs propres xY sous la forme :

N
— m
Yo = 2 B.i X
i=1
L’expression du vecteur y; sur la base des vec-
teurs propres est alors la suivante :

1 AV
x[ﬁi 2 B}

}= -

Lorsque le nombre d’itérations devient grand, les
itérés successifs deviennent colinéaires au vec-
teur propre x\ :

Modes propres
de la structure CAMUS

Modele bidimensionnel de la structure

En considérant que la structure présente un
amortissement classique et qu’il n’y a pas
d’amortissements localisés, la détermination des
caractéristiques modales se fait par ’intermé-
diairc des modes propres réels. Un premier
modele bidimensionnel est élaboré afin de réa-
liser une analyse simple et rapide des fréquences
et modes propres de la structure. Le calcul est
effectué en contraintes planes et les conditions
aux limites a la base de la structure imposent des
déplacements horizontaux et verticaux nuls en
tout point.

Les murs et les fondations sont modélisés par
des ¢léments finis volumiques d’épaisseurs res-
pectives ¢, = 0,12 m et e; = 0,20 m (soit deux
fois 1'épaisseur nominale). Les planchers en
béton sont modélisés a 1’aide d’éléments de
poutre ayant les caractéristiques suivantes :
p=9525 kg/m’ (avec masses additionnelles,

BULLETIN DES LABORATOIRES DES PONTS ET CHAUSSEES - 219 - JANVIER-FEVRIER 1999 - REF. 4244 - PP. 53-67



¢f. « Description de la structure CAMUS »},
E = 28 000 MPa, v = 0.2, aire de la section
S = 0.357 m’, section réduite S, = 0,2975 m",
moment d’inertie de torsion V,; = 0,0013 m?,
excentrement du centre de gravité de la section
Ys = 0,03 m. L’excentrement est calculé
d’aprés la position des masses additionnelles,
mais il modifie peu les fréquences propres de la
structure (Semblat et al., 1998). La masse volu-
mique du plancher inférieur vaut
p = 2400 kg/m’ (pas de masses additionnelles)
¢t son excentrement est nul.

Le premier mode propre de la structure est
représenté sur la figure S et correspond a une
fréquence propre de 8,7 Hz. Cette premiere
fréquence propre est nettement plus ¢élevée que
celle donnée par l'expérience (7,24 Hz). Le
modele bidimensionnel considéré est donc plus
rigide que la structure réelle. En outre, dans les
premiers modes propres obtenus avec ce
modele, il n’apparait pas de mode propre ver-
tical comme indiqué par ’expériencc (CEA,
1997).

Afin de rendre le modele plus réaliste, la table
vibrante et ses supports ont également été
modélisés. Le modele complet ainsi considéré
devrait étre plus souple que le précédent et
conduire a des fréquences propres plus proches
de la réalité. En outre, la masse totale de la
table vibrante est d’environ 25 t, cc qui n’est
pas négligeable eu égard a la masse de la
structure.

Premiére fréquence
propre f, = 8,7 Hz

Fig. 6 - Premier mode propre
de la structure bidimensionnelle.
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Modéle bidimensionnel complet

Description du modéie

Comme lec montre la figure 6, le modele bidi-
mensionnel complet comprend la structure telle
que décrite précédemment, la table vibrante et
ses supports (ressorts localisés). La table
vibrante, supposée rigide, a €té incluse dans le
modele en tenant compte de sa masse ¢t de sa
géométrie soient : masse volumique
p = 615 kg/m’ (calculéc d’aprés la masse de la
table, m, = 25 t, supposée uniformément répar-
tie), Cpaisseur ¢ = 6 m (pour le calcul en
contraintes plancs, c’est-a-dire la « profondeur »
de la table dans la direction perpendiculaire au
modele). Une poutre trés rigide est fixée a la
table afin de relier celle-ci aux supports (res-
sorts verticaux) excentrés par rapport aux extré-
mités de la table.

Les ressorts verticaux fixés aux extrémités de
cette poutre ont une rigidité K = 4.10° N/m
(CEA, 1997). La rigidité ponctuelle fixée au
milieu de la poutre représentc deux ressorts
situés a "avant et a I'arriére de la table et a donc
unc rigidité deux fois plus grande soit
K’ = 2K = 8.10 N/m. Dans les simulations
numériques, plusicurs valeurs de K ont été utili-
sées afin d’analyser I’évolution des fréquences
propres.

Les ¢éléments employés dans CESAR afin de
modéliser ces ressorts verticaux sont des élé-
ments spéciaux appelés également rigidités
ponctuelles (LCPC, 1997). Ils permettent de
donner de maniere cxplicite des matrices de rigi-
dité (ou de masse ou d’amortissement) €lémen-
taires. Les coefficients des matrices élémentaires
sont donnés explicitement et ces éléments spé-
ciaux peuvent soit étre connectés a une base
rigide, soit relier deux nceuds distincts. 11 est
ainsi possible de modéliser des rigidités ou des
amortisscurs ponctucls ou encore des masses
localisées.

Modes et fréquences propres

Pour le modele bidimensionnel complet, la
condition aux limites concerne le centre de gra-
vité de la table : il est fixé dans la direction
horizontale afin d’éliminer les mouvements de
translation de corps rigide (les mouvements
verticaux sont limités par les rigidités supports
de la table vibrante). Le calcul est basé comme
précédemment sur ['hypothése de contraintes
planes. Les trois premiers modes propres du
modéle bidimensionnel complet sont donnés
sur la figure 7.
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L’intégration de la table vibrante et de ses sup-
ports (rigidités ponctuelles) dans le modele
permet de rendre compte des mouvements de
rotation de ’ensemble table/structure pour les
modes 1 et 3. Il est également possible d’ac-
céder au deuxieéme mode propre (vertical), qui
est di a la souplesse des supports de la table et
qui ne peut pas étre obtenu avec le premier
modele (structure seule). La premiére fréquence
propre est plus faible que pour la structure
bidimensionnelle  seule, puisqu’elle  vaut
7,93 Hz. Elle reste toutefois encore assez éloi-
gnée de la fréquence donnée expérimentale-
ment (7,24 Hz). Le premier mode propre est
un mode de flexion. Le deuxiéme mode est un
mode de vibration verticale. Le troisiéme mode
est le deuxieme mode de flexion. Comme [’in-
dique la figure 7, les mouvements de la table
vibrante sont tout a fait significatifs et ont un
effet non négligeable sur la forme des modes
propres. Il est donc nécessaire d’intégrer la
table vibrante et ses supports dans le modele.

Le tableau I donne, pour différentes valeurs de
rigidité K, les fréquences propres et les pour-
centages d’erreur pour le modele bidimen-
sionnel complet. Ce modele complet s’avere
moins rigide que le premier modele puisque les
supports de la table vibrante induisent une cer-
taine souplesse (pas de conditions aux limites
rigides). Compte tenu de sa masse, la contribu-
tion de la table vibrante a la répartition totale
des masses doit, par ailleurs, étre assez impor-
tante et modifier de fagon sensible les parame-
tres modaux.

En tenant compte des incertitudes sur la valeur
de K, les différentes valeurs choisies condui-
sent a des fréquences propres plus faibles
qu’avec le premier modele. Ces fréquences se
rapprochent des valeurs déterminées expéri-
mentalement (tab. I). Pour ’ensemble des trois
premicres fréquences propres, les pourcentages
d’erreurs par rapport aux valeurs expérimen-
tales obtenus pour K = 3.10° N/m sont faibles
(respectivement 7, 2 et 2,4 %). C’est donc

cette valeur de K qui sera retenue dans la suite.
Pour K = 2,5.10° N/m, les pourcentages sont
légerement plus faibles, mais cette valeur de
rigidité des supports de la table differe tres for-
tement de la valeur fournie pour le concours de
prévisions CAMUS (CEA, 1997).

Modele tridimensionnel complet

Description du modéle

En trois dimensions, la structure et la table sont
prises avec les mémes caractéristiques que pour
le modele bidimensionnel. Dans le cas tridimen-
sionnel, les murs, la fondation et les planchers
sont représentés par des éléments de coques (au
lieu d’éléments volumiques bidimensionnels
pour les deux premiers et d’éléments de poutre
pour les deux derniers). Comme en dimension 2,
la masse volumique des planchers supérieurs est
calculée en tenant compte de la contribution des
masses additionnelles (Semblat et al., 1998).

La table est modélisée a 1’aide d’éléments volu-
miques et sa massc cst supposée répartie de
facon uniforme dans son volume. Le systéme de
contreventement est représenté avec des élé-
ments de poutre tridimensionnels (au lieu de
poutres bidimensionnelles). Les supports de la
table vibrante sont modélisés par des éléments
spéciaux ponctuels tridimensionnels définis de la
méme manicre qu’en dimension 2 (seul le
nombre de termes de la matrice élémentaire
change). Le maillage du modele tridimensionnel
complet est représenté sur la figure 8.

Modes et fréquences propres

La figure 7 montre les premier, deuxiéme et
troisiéme modes propres obtenus avec le modele
tridimensionnel complet (structure + table
vibrante). Les modes sont du méme type qu’en
dimension 2 : dans I’ordre, flexion dans le plan
des murs, mode vertical puis deuxieme mode de
flexion.

TABLEAU |
Fréquences propres pour différentes valeurs de K (modéle bidimensionnel complet)
Fréquence propre Pourcentage d’erreur
Valeur de K (Hz) %

(N/m)

f, f, f, t, f,
4108 7,93 22,87 35,17 9,5 14,35 6.5
3.108 7,75 20,43 33,82 7 2 2.4
2,5.10° 7,61 18,95 32,84 5 5,1 0,5
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Fig. 8 -

Maillage du modéle
trimensionnel avec la table
vibrante.
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TABLEAU I
Fréquences propres pour différentes valeurs de K (modéle tridimensionnel complet)
Fréquence propre Pourcentage d’erreur
Valeur de K (Hz) %
(N/m)
f1 12 f1 f2 fa
4108 7.81 21,69 34,28 7.8 8.4 38
3.10° 7,65 19,58 33,25 5,6 2.1 0,07
25108 7,52 18,26 32,40 3,8 8,7 1,8

Dans le calcul des modes et fréquences propres
tridimensionnels, plusieurs valeurs de rigidité K
ont également été considérées. Les résultats cor-
respondants a ces différentes valeurs sont donnés
dans le tableau II.

Les résultats numériques obtenus sont satisfai-
sants et sont plus proches des valeurs expérimen-
tales que dans le cas bidimensionnel (tableau II).
Pour la valeur de K retenue (K = 3.10° N/m),
les différences entre valeurs calculées et valeurs

mesurées sont faibles et valent respectivement
5,6, 2,1 et 0,07 % pour les trois premicres fré-
quences propres. Ces valeurs sont inférieures aux
différences généralement observées entre modeéle
réduit et structure réelle (Buland, 1995).

Ces résultats étant tout a fait satistaisants, c’est
ce modele complet (bidimensionnel et tridimen-
sionnel) qui sera utilisé dans la suite pour la
détermination de la réponse sismique du bati-
ment. La valeur de la rigidité des supports de la
table sera donc prise égale a 3.10° N/m.
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Réponse linéaire
par superposition modale

Chargement sismique et application

Accélérogrammes synthétiques

Les chargements sismiques appliqués correspon-
dent a trois signaux d’accélération synthétiques
différents donnés en g (accélération de la pesan-
teur) : CAMUSO02, CAMUS17 et CAMUS19. Ces
signaux sont représentés sur la figure 9 et donnent
I’accélération horizontale appliquée a la table
vibrante. Le chargement de la structure est équiva-
lent a2 un mouvement de base rigide imposé.

0,2} xg Camus02

0.1

IaM | M Wil
‘ ‘H’! !‘ "

Accélération
o

8 10 12 14 16 18 20

0,4
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0,2
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< 02¢ Y :
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Ml i ll KHHN Ui,

W ywl‘ [;’;' ‘ ' LT

Accélération

6 8 10 12 14 16
Temps (s)

Fig. 9 - Signaux d’accélération pour les calculs linéaires
et non lineaires (en « g »).

L’accélérogramme CAMUSO2 présente une
amplitude maximale de 0,24 g, CAMUS17 un
maximum de 0,49 g et CAMUS19 0,71 g.
L application d’un chargement correspondant a
chacun des trois accélérogrammes est décrite
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dans la suite. Le pas de temps utilisé dans le
calcul est At = 0,01 s. La figure 10 donne le
spectre  de  pseudo-accélération du  signal
CAMUSO2 en fonction de la période.
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Fig. 10 -Spectre de réponse CAMUS02
(pseudo-accelération en « g »).

Mouvement imposé a la base

Comme le batiment est de faible hauteur. un
mouvement d’accélération appliqué a sa base
provoque a la fois un mouvement d’ensemble de
la structure et un mouvement relatit par rapport a
cette base. Ceci n’est pas le cas pour les struc-
tures de grande hauteur pour lesquelles il peut ne
pas y avoir réellement de mouvement de corps
rigide (Bisch et al., 1999).

Si I'on note x = x¢ + X; le déplacement total de
la structure lié a un mouvement imposé X, en
son centre de gravité, I’équation du mouvement
relatif x¢ du systeme table + batiment peut

s’écrire de la maniere suivante (Clough et
Penzien, 1993) :

M(Xs + X6} + Cxg + Kxg = F(1) =

Seule les forces d’incrtie s’expriment en fonction
des déplacements globaux de la structure.
L’¢équation du mouvement s’exprime alors direc-
tement en fonction de "accélération imposée au
centre de gravité du systeme sous la forme sui-
vante :

Mx¢ + Cxg + Kxg =~ MX,

Pour appliquer ce type dc chargement a la struc-
ture, les forces d’inertic ont donc été calculées
d’aprés les signaux d’accélération synthétiques et
appliquées en tout point de la structure. Le char-
gement considéré dans la modélisation numé-
rique est ainsi un chargement volumique réparti
dans ’ensemble de la structure et appliqué sui-
vant la direction d’accélération (horizontale).
Comme le centre de gravité G de la table est fixe
dans le plan horizontal, les mouvements de la
structure sont donc des déplacements relatifs
définis par rapport a un repere lié au point G.



Contribution de chaque mode
a la réponse dynamique

Lorsque la structure est soumise a un déplace-
ment statique unitaire de sa base, en notant
le vecteur déplacement de tous les nceuds de la
structure, le facteur de participation modale p;
représente la contribution du mode i a la
réponse et il est défini par (Clough et Penzien,
1993) :

1.7 M§ .
p; = Tw———x(i) Mx(i) et m; = p;

oit x est le vecteur propre du mode i, M la
matrice de masse et m; la masse effective du
mode i. Dans cette expression, le dénominateur
est généralement égal a I'unité (normalisation de
la matrice modale par rapport a la matrice de
masse).

Les pourcentages de masse effective sont cal-
culés en divisant les masses effectives de chaque
mode par la masse totale de la structure. Ils
caractérisent la contribution de chacun des
modes 2 la réponse de la structure. Lorsque la
somme des pourcentages de masse effective est
insuffisante, il est possible d’utiliser la « mé-
thode du mode résiduel » (Bisch et al., 1999 ;
Imbert, 1979) en affectant la masse manquante
au dernier mode retenu.

Réponse dynamique linéaire
pour le modéle bidimensionnel complet

Détermination de la réponse par superposition
modale

La détermination de la réponse dynamique
bidimensionnelle est réalisée a ['aide d’une
méthode de superposition modale (module
SUMO de CESAR, Brioist, 1997). Le modele
considéré est le modéle complet présenté sur la
figure 6 et dont les modes propres sont donnés
sur la figure 7. Dans le calcul, la valeur de K
retenue est K = 3.10° N/m et la sollicitation
est calculée d’apres les signaux d’accélération
synthétiques de la figure 9. Le pas de temps
utilisé dans le calcul est At = 0,01 s. La valeur
de K semble avoir une importance sensible sur
la réponse dynamique de la structure puisque
les courbes obtenues pour différentes valeurs
de K ne coincident pas (Semblat et al., 1998).
Un effet de déphasage important des pics et
d’amplification plus ou moins grande du dépla-
cement apparait. La réponse dynamique linéaire
de la structure semble donc trés sensible a la
valeur de K, c’est-a-dire a de faibles variations
des fréquences propres.
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Les courbes des figures 11, 12 et 13 donnent
le déplacement horizontal au sommet de Ia
structure calculé pour les trois sollicitations sis-
miques (CAMUSO02, 17 et 19). L’amplitude du
déplacement est d’ordre centimétrique puis-
qu’elle varie de 0.5 cm pour CAMUSI17 a
presque 4 cm pour CAMUSI19. Sur les courbes
de réponse, la période d’oscillation observée
correspond a la premicre période propre de
I’ensemble structure/table soit T, = 1/1, =
0,13 s (cf. tab. I).

Pourcentages de masse effective pour le modéle
bidimensionnel complet

Afin de déterminer la contribution de chaque
mode a la réponse dynamique de la structure,
la masse modale effective (c¢f. « Contribution
de chaque mode a la réponse dynamique »)
des 10 premiers modes de la structure
CAMUS a été estimée dans le cas du modele
bidimensionnel complet. Le tableau III donne
les pourcentages de masse effective corres-
pondant aux dix premiéres fréquences propres
pour la sollicitation sismique CAMUSI19 et
avec une rigidité des supports de la table
K = 3.10° N/m.

TABLEAU Il
Fréguences propres et pourcentages de masse
effective (modéle bidimensionnel)

st | s ome | g PR

1 7,75 41,59
2 20,43 0

3 33,82 10,18
4 58,42 0,272
5 63,62 0

6 90,53 2,791
7 129,71 0

8 131,17 0,824
9 164,13 0,444
10 174,94 0,027

Comme indiqué dans le tableau llI, le pourcen-
tage de masse effective est élevé pour le premier
et le troisieme mode (respectivement 41,6 et
10,2 %). Pour tous les autres modes, les pour-
centages de masse effective sont trés faibles. La
contribution de ces deux modes a la réponse
dynamique de la structure est donc largement
prépondérante. Celle des autres modes est négli-
geable (Semblat et al., 1998).

Réponse dynamique linéaire pour le modele
tridimensionnel complet

La détermination de la réponse dynamique tridi-
mensionnelle est réalisée a partir du modele com-
plet présenté sur la figure 8. La réponse differe
légerement de la réponse obtenue en dimension 2
puisque les tréquences propres calculées avec les
deux modeles sont sensiblement différentes.
L’amplitude maximale de déplacement reste tou-
tefois du méme ordre qu’en dimension 2. Les
pourcentages de masse effective sont également
¢quivalents en dimension 3 avec une nette prédo-
minance des modes 1 et 3 (Semblat et al., 1998).
Outre I'amélioration des valeurs de fréquences
propres estimées (plus proches de celles données
par D’expérience), I'intérét du modele tridimen-
sionnel est de permettre I’analyse de sollicitations
sismiques d’orientation quelconque.

La figure 14 donne la déformée du modele tridi-
mensionnel pour le séisme CAMUSO02 a U'instant
t = 11,71 s. D apres cette tigure, la déformation
s’opere presque exclusivement en flexion dans le
plan des murs (structure symétrique sollicitée
suivant une direction de son plan de symétrie).
Les mouvements de la table vibrante sur ses sup-
ports ne sont pas négligeables par rapport aux
mouvements de la structure. L’intégration de la
table vibrante dans le modele est donc parfaite-
ment justifiée.
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Fig. 14 - Déformée du modéle tridimensionnel complet
(CAMUSO2, t = 11,715, K = 3.10° N/m).

Conclusions

Dans le cadre du projet CAMUS, la réponse sis-
mique d’un batiment a ét¢ déterminée sur une
maquette grace a des essais sur la table vibrante
« Azalée » du CEA (CEA, 1997). La contribu-
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tion du LCPC a la modélisation numérique de ce
probléme a été réalisée a ’aide du progiciel de
calcul par éléments finis CESAR-LCPC.

La modélisation de la structure CAMUS et
I’estimation numérique de ses caractéristiques
modales ne peut se faire correctement en consi-
dérant la structure seule. Il est nécessaire d’in-
tégrer dans le modéle la table vibrante ainsi
que ses supports (sous forme de rigidités ponc-
tuelles). Les paramétres modaux des trois pre-
miers modes, déterminés a 1'aide de
CESAR-LCPC, sont alors trés sensiblement
modifiés et coincident bien avec les mesures
expérimentales.
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1 - Discretization of the structure and numerical modelling of linear response

J.-F. SEMBLAT, A. AGUAMEUR, F.-J. ULM, H. MITANI

This paper presents the CAMUS project (Conception et Analyse de MUrs sous Séismes, 1997-1998) with reference
to the LCPC’s entry to the forecasting competition associated with this programme (digital modelling of the seismic
response of a building).The experimental model of the building was tested on a vibrating table at the CEA in order to

conduct an experimental analysis of its seismic response.

This first part of the study deals with the modelling of the dynamic linear response of the structure (using
cesAR-LCPC) and analysis of the way the characteristics of the model influence the modal parameters. Analysis of
the intrinsic modes of vibration of the structure alone does not give the natural frequencies determined by experi-
ment. Two comprehensive models (one two-dimensional, the other three-dimensional) were then used to analyze
the structure/vibrating table combination. The natural frequencies they output were lower and nearer to the observed
frequencies. We were then able to detect the intrinsic vertical mode of vibration, caused by the flexibility of the table

supports.

The dynamic linear response was determined using a modal superimposition technique and the contribution of each
mode of vibration was analyzed (effective masses). Part two of the paper will provide an account of the nonlinear
dynamic analysis and the comparison with experimental results.
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